Skip to main content
Log in

Resilient distributed economic dispatch of smart grids under deception attacks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The deepening integration of distributed energy resources in smart grids catalyzes the development of distributed energy management methods owing to their superiorities in flexibility, scalability, and robustness against single-point failures. Nevertheless, the reliance on localized implementation of distributed methods increases the susceptibility to malicious attacks. This paper focuses on the economic dispatch of smart grids under deception attacks which can artificially tamper with the information among the communication network. We investigate and reveal how such attacks deteriorate the results of optimal power generation schedule. Then, an easy-to-implement defense strategy based on the extreme values discarding technique is developed to realize resilient energy management. It is shown that under a \(2R+1\)-robustness assumption on communication networks, the proposed method is resilient to R-local deception attacks. Compared with existing works, the benefits of the defense strategy include no restricted form of deception attacks and no isolation of attacked nodes. Finally, simulation examples verify the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No data were used for the current study in this paper.

References

  1. Liang, G., Weller, S.R., Zhao, J., Luo, F., Dong, Z.Y.: The 2015 Ukraine Blackout: implications for false data injection attacks. IEEE Trans. Power Syst. 32(4), 3317 (2017). https://doi.org/10.1109/TPWRS.2016.2631891

    Article  ADS  Google Scholar 

  2. Vaz, R.: Venezuela’s power grid disabled by cyber attack. Green Left Weekly 1213, 15 (2019)

    Google Scholar 

  3. He, H., Yan, J.: Cyber-physical attacks and defences in the smart grid: a survey IET. Cyber-Phys. Syst. Theory Appl. 1(1), 13 (2016)

    Article  Google Scholar 

  4. Kim, T.T., Poor, H.V.: Strategic protection against data injection attacks on power grids. IEEE Trans. Smart Grid 2(2), 326 (2011). https://doi.org/10.1109/TSG.2011.2119336

    Article  Google Scholar 

  5. Musleh, A.S., Chen, G., Dong, Z.Y.: A survey on the detection algorithms for false data injection attacks in smart grids. IEEE Trans. Smart Grid 11(3), 2218 (2020). https://doi.org/10.1109/TSG.2019.2949998

    Article  Google Scholar 

  6. Xia, X., Xiao, Y., Liang, W., Cui, J.: Detection methods in smart meters for electricity thefts: a survey. Proc. IEEE 110(2), 273 (2022). https://doi.org/10.1109/JPROC.2021.3139754

    Article  Google Scholar 

  7. Xia, X., Xiao, Y., Liang, W., Zheng, M.: Strategic FRTU deployment considering cybersecurity in secondary distribution network. IEEE Trans. Netw. Sci. Eng. 7(2), 805 (2020). https://doi.org/10.1109/TNSE.2018.2855139

    Article  Google Scholar 

  8. Liao, C., Ten, C.W., Hu, S.: Strategic FRTU deployment considering cybersecurity in secondary distribution network. IEEE Trans. Smart Grid 4(3), 1264 (2013). https://doi.org/10.1109/TSG.2013.2256939

    Article  Google Scholar 

  9. Zhou, Y., Chen, X., Zomaya, A.Y., Wang, L., Hu, S.: Algorithm for leveraging probabilistic detection of energy theft in smart home. IEEE Trans. Emerging Topics Comput. Dyn. Prog. 3(4), 502 (2015). https://doi.org/10.1109/TETC.2015.2484841

    Article  Google Scholar 

  10. Xia, X., Xiao, Y., Liang, W.: Forensics and security power generation, operation, and control. IEEE Trans. Inform. 15, 361 (2020). https://doi.org/10.1109/TIFS.2019.2921232

    Article  Google Scholar 

  11. Jindal, A., Dua, A., Kaur, K., Singh, M., Kumar, N., Mishra, S.: Hybrid deep neural networks for detection of non-technical losses in electricity smart meters. IEEE Trans. Ind. Inform. 12(3), 1005 (2016). https://doi.org/10.1109/TII.2016.2543145

    Article  Google Scholar 

  12. Esmalifalak, M., Liu, L., Nguyen, N., Zheng, R., Han, Z.: Hybrid deep neural networks for detection of non-technical losses in electricity smart meters. IEEE Syst. J. 11(3), 1644 (2017). https://doi.org/10.1109/JSYST.2014.2341597

    Article  ADS  Google Scholar 

  13. Yu, J.J.Q., Hou, Y., Li, V.O.K.: Hybrid deep neural networks for detection of non-technical losses in electricity smart meters. IEEE Trans. Ind. Inform. 14(7), 3271 (2018). https://doi.org/10.1109/TII.2018.2825243

    Article  Google Scholar 

  14. Buzau, M.M., Tejedor-Aguilera, J., Cruz-Romero, P., Gómez-Expósito, A.: Hybrid deep neural networks for detection of non-technical losses in electricity smart meters. IEEE Trans. Power Syst. 35(2), 1254 (2020). https://doi.org/10.1109/TPWRS.2019.2943115

    Article  ADS  Google Scholar 

  15. Taimoor, M., Lu, X., Maqsood, H., Sheng, C.: A novel fault diagnosis in sensors of quadrotor unmanned aerial vehicle. J. Amb. Intell. Human. Comput. 14(10), 14081 (2023). https://doi.org/10.1007/s12652-022-04113-3

    Article  Google Scholar 

  16. Somuah, C., Khunaizi, N.: Application of linear programming redispatch technique to dynamic generation allocation. IEEE Trans. Power Syst. 5(1), 20 (1990). https://doi.org/10.1109/59.49081

    Article  ADS  Google Scholar 

  17. Lin, C.E., Viviani, G.L.: Hierarchical economic dispatch for piecewise quadratic cost functions. IEEE Trans. Power Apparatus Syst. 103(6), 1170 (1984). https://doi.org/10.1109/TPAS.1984.318445

    Article  ADS  Google Scholar 

  18. Irisarri, G., Kimball, L., Clements, K., Bagchi, A., Davis, P.: Economic dispatch with network and ramping constraints via interior point methods. IEEE Trans. Power Syst. 13(1), 236 (1998). https://doi.org/10.1109/59.651641

    Article  ADS  Google Scholar 

  19. Chiang, C.L.: Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels. IEEE Trans. Power Syst. 20(4), 1690 (2005). https://doi.org/10.1109/TPWRS.2005.857924

    Article  ADS  Google Scholar 

  20. Zhang, C., Wu, Y., Gao, L., Li, X.: in A new constraint handling method for differential evolution solving non-convex economic dispatch problems with valve loading effect. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 1070–1076 (2016). https://doi.org/10.1109/CEC.2016.7743907

  21. Basu, M.: Hybridization of bee colony optimization and sequential quadratic programming for dynamic economic dispatch. Int. J. Electr. Power Energy Syst. 44(1), 591 (2013). https://doi.org/10.1016/j.ijepes.2012.08.026

    Article  Google Scholar 

  22. Duvvuru, N., Swarup, K.S.: A hybrid interior point assisted differential evolution algorithm for economic dispatch. IEEE Trans. Power Syst. 26(2), 541 (2011). https://doi.org/10.1109/TPWRS.2010.2053224

    Article  ADS  Google Scholar 

  23. Li, H., Wang, Z., Chen, G., Dong, Z.Y.: Distributed robust algorithm for economic dispatch in smart grids over general unbalanced directed networks. IEEE Trans. Ind. Inform. 16(7), 4322 (2020)

    Article  Google Scholar 

  24. Chen, G.: Delay effects on consensus-based distributed economic dispatch algorithm in microgrid. IEEE Trans. Power Syst. 33(1), 602 (2018)

    Article  ADS  Google Scholar 

  25. Xu, Y., Han, T., Cai, K., Lin, Z., Yan, G., Fu, M.: A distributed algorithm for resource allocation over dynamic digraphs. IEEE Trans. Signal Process. 65(10), 2600 (2017). https://doi.org/10.1109/TSP.2017.2669896

    Article  ADS  MathSciNet  Google Scholar 

  26. Yang, T., Lu, J., Wu, D., Wu, J., Shi, G., Meng, Z., Johansson, K.H.: A Distributed Algorithm for Economic Dispatch Over Time-Varying Directed Networks With Delays. IEEE Transactions on Industrial Electronics 64(6), 5095 (2017)

    Article  Google Scholar 

  27. Binetti, G., Member, S., Davoudi, A., Lewis, F.L., Naso, D., Turchiano, B., Member, S.: Distributed consensus-based economic dispatch with transmission losses. IEEE Trans. Power Syst. 29(4), 1711 (2014)

    Article  ADS  Google Scholar 

  28. Wu, J., Yang, T., Wu, D., Kalsi, K., Johansson, K.H.: Distributed optimal dispatch of distributed energy resources over lossy communication networks. IEEE Trans. Smart Grid 8(6), 3125 (2017)

    Article  Google Scholar 

  29. Yang, T., Wu, D., Fang, H., Ren, W., Wang, H., Hong, Y., Johansson, K.H.: Distributed energy resource coordination over time-varying directed communication networks. IEEE Trans. Control Netw. Syst. 6(3), 1124 (2019). https://doi.org/10.1109/TCNS.2019.2921284

    Article  MathSciNet  Google Scholar 

  30. Zheng, W.: Fully distributed multi-area economic dispatch method for active distribution networks IET Generation. Transm. Distrib. 9, 1341 (2015)

    Article  Google Scholar 

  31. Xu, T., Wu, W., Zheng, W., Sun, H., Wang, L.: Fully distributed quasi-newton multi-area dynamic economic dispatch method for active distribution networks. IEEE Trans. Power Syst. 33(4), 4253 (2018). https://doi.org/10.1109/TPWRS.2017.2771950

    Article  ADS  Google Scholar 

  32. Zhang, Z., Yue, D., Dou, C., Cheng, Z., Chen, L.: A robust consensus-based economic dispatch strategy under DoS attack Proceedings - 2019 IEEE International Conference on Industrial Cyber Physical Systems, ICPS 2019 pp. 127–132 (2019). https://doi.org/10.1109/ICPHYS.2019.8780286

  33. Yang, F., Kang, P., Guan, X.: Distributed Economic Dispatch for Cyber Attacked Smart Grid Based on Resilient Event-Triggered Consensus Proceedings of the IEEE Conference on Decision and Control 2020-Decem(Cdc), 5725 (2020). https://doi.org/10.1109/CDC42340.2020.9304250

  34. Shao, G., Wang, R., Wang, X.F., Liu, K.Z.: Distributed algorithm for resource allocation problems under persistent attacks. J. Franklin Inst. 357(10), 6241 (2020). https://doi.org/10.1016/j.jfranklin.2020.04.004

    Article  MathSciNet  Google Scholar 

  35. Wang, Y., Zhang, M., Song, K., Li, T., Zhang, N.: An optimal dos attack strategy disturbing the distributed economic dispatch of microgrid Complexity 2021 (2021). https://doi.org/10.1155/2021/5539829

  36. Zhao, C., He, J., Cheng, P., Chen, J.: Analysis of consensus-based distributed economic dispatch under stealthy attacks. IEEE Trans. Ind. Electron. 64(6), 5107 (2017). https://doi.org/10.1109/TIE.2016.2638400

    Article  Google Scholar 

  37. Li, P., Liu, Y., Xin, H., Jiang, X.: A robust distributed economic dispatch strategy of virtual power plant under cyber-attacks. IEEE Trans. Ind. Inform. 14(10), 4343 (2018). https://doi.org/10.1109/TII.2017.2788868

    Article  Google Scholar 

  38. Zhang, Y., Xie, X., Fu, W., Chen, X., Hu, S., Zhang, L., Xia, Y.: An optimal combining attack strategy against economic dispatch of integrated energy system. IEEE Trans. Circ. Syst II Express Briefs 70(1), 246 (2023). https://doi.org/10.1109/TCSII.2022.3196931

    Article  Google Scholar 

  39. Zeng, W., Zhang, Y., Chow, M.Y.: Resilient distributed energy management subject to unexpected misbehaving generation units. IEEE Trans. Ind. Inform. 13(1), 208 (2017). https://doi.org/10.1109/TII.2015.2496228

    Article  Google Scholar 

  40. Duan, J., Zeng, W., Chow, M.Y.: Resilient distributed DC optimal power flow against data integrity attack. IEEE Trans. Smart Grid 9(4), 3543 (2018). https://doi.org/10.1109/TSG.2016.2633943

    Article  Google Scholar 

  41. Yang, J., Dong, C.: Attack-resilient strategy for consensus-based distributed economic dispatch problem. In: 2020 Chinese Control And Decision Conference (CCDC) , pp. 3659–3664 (2020). https://doi.org/10.1109/CCDC49329.2020.9164599

  42. Zhao, P., Gu, C., Ding, Y., Liu, H., Bian, Y., Li, S.: Cyber-resilience enhancement and protection for uneconomic power dispatch under cyber-attacks. IEEE Trans. Power Deliv 36(4), 2253 (2021). https://doi.org/10.1109/TPWRD.2020.3038065

    Article  Google Scholar 

  43. Kim, J., Bhela, S., Anderson, J., Zussman, G.: In identification of intraday false data injection attack on der dispatch signals In: 2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), pp. 40–46 (2022). https://doi.org/10.1109/SmartGridComm52983.2022.9960974

  44. Jena, S., Padhy, N.P., Srivastava, A.: In Resilient Economical Operation of DC Microgrid Clusters with Heterogeneous Sources 2022 IEEE 10th Power India International Conference (PIICON), pp. 1–6 (2022). https://doi.org/10.1109/PIICON56320.2022.10045209

  45. Zhang, W., Qian, T., Chen, X., Huang, K., Tang, W., Wu, Q.: Resilient economic control for distributed microgrids under false data injection attacks. IEEE Trans. Smart Grid 12(5), 4435 (2021). https://doi.org/10.1109/TSG.2021.3073874

    Article  Google Scholar 

  46. Wood, A.J., Wollenberg, B.F., Sheblé, G.B.: Power Generation, Operation, and Control, 3rd edn. Wiley, New York (2009)

    Google Scholar 

  47. Kieckhafer, R., Azadmanesh, M.: Reaching approximate agreement with mixed-mode faults. IEEE Trans. Parallel Distrib. Syst. 5(1), 53 (1994). https://doi.org/10.1109/71.262588

    Article  Google Scholar 

  48. LeBlanc, H.J., Zhang, H., Koutsoukos, X., Sundaram, S.: Reaching approximate agreement with mixed-mode faults. IEEE J. Select. Areas Commun. 31(4), 766 (2013). https://doi.org/10.1109/JSAC.2013.130413

    Article  Google Scholar 

  49. Dibaji, S.M., Ishii, H.: Resilient consensus of second-order agent networks: asynchronous update rules with delays. Automatica 81, 123 (2017). https://doi.org/10.1016/j.automatica.2017.03.008

    Article  MathSciNet  Google Scholar 

  50. Usevitch, J., Panagou, D.: Resilient leader-follower consensus to arbitrary reference values in time-varying graphs. IEEE Trans. Autom. Control 65(4), 1755 (2020). https://doi.org/10.1109/TAC.2019.2934954

    Article  MathSciNet  Google Scholar 

  51. Wang, Y., Ishii, H.: Resilient consensus through event-based communication. IEEE Trans. Control Netw. Syst. 7(1), 471 (2020). https://doi.org/10.1109/TCNS.2019.2924235

    Article  MathSciNet  Google Scholar 

  52. Sundaram, S., Gharesifard, B.: Distributed optimization under adversarial nodes. IEEE Trans. Autom. Control 64(3), 1063 (2019). https://doi.org/10.1109/TAC.2018.2836919

    Article  MathSciNet  Google Scholar 

  53. Fu, W., Ma, Q., Qin, J., Kang, Y.: Resilient consensus-based distributed optimization under deception attacks. International Journal of Robust and Nonlinear Control 31(6), 1803 (2021). https://doi.org/10.1002/rnc.5026

    Article  MathSciNet  Google Scholar 

  54. He, W., Xu, W., Ge, X., Han, Q.L., Du, W., Qian, F.: Secure control of multiagent systems against malicious attacks: a brief survey. IEEE Trans. Ind. Inform. 18(6), 3595 (2022). https://doi.org/10.1109/TII.2021.3126644

    Article  Google Scholar 

  55. Liu, X.K., Wen, C., Xu, Q., Wang, Y.W.: Resilient control and analysis for DC microgrid system under DoS and impulsive FDI attacks. IEEE Trans. Smart Grid 12(5), 3742 (2021). https://doi.org/10.1109/TSG.2021.3072218

    Article  Google Scholar 

  56. He, W., Qian, F., Han, Q.L., Chen, G.: Almost sure stability of nonlinear systems under random and impulsive sequential attacks. IEEE Trans. Autom. Control 65(9), 3879 (2020). https://doi.org/10.1109/TAC.2020.2972220

    Article  MathSciNet  Google Scholar 

  57. Liu, X., Xu, W.: Minimum emission dispatch constrained by stochastic wind power availability and cost. IEEE Trans. Power Syst. 25(3), 1705 (2010). https://doi.org/10.1109/TPWRS.2010.2042085

    Article  ADS  Google Scholar 

  58. Guo, F., Wen, C., Mao, J., Song, Y.D.: Distributed economic dispatch for smart grids with random wind power. IEEE transactions on smart grid 7(3), 1572 (2016). https://doi.org/10.1109/TSG.2015.2434831

    Article  Google Scholar 

  59. Meng, W., Wang, X.: Distributed energy management in smart grid with wind power and temporally coupled constraints. IEEE Trans. Ind. Electron. 64(8), 6052 (2017). https://doi.org/10.1109/TIE.2017.2682001

    Article  Google Scholar 

  60. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1998). https://doi.org/10.1007/978-3-642-02431-3

  61. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont, MA, USA (2016)

    Google Scholar 

  62. Zhang, H., Fata, E., Sundaram, S.: A notion of robustness in complex networks. IEEE Trans. Control Netw. Syst. 2(3), 310 (2015). https://doi.org/10.1109/TCNS.2015.2413551

  63. Fu, W., Qin, J., Shi, Y., Zheng, W.X., Kang, Y.: Resilient consensus of discrete-time complex cyber-physical networks under deception attacks. IEEE Trans. Ind. Inform. 16(7), 4868 (2020). https://doi.org/10.1109/TII.2019.2933596

    Article  Google Scholar 

  64. Zhai, Y., Liu, Z.W., Ge, M.F., Wen, G., Yu, X., Qin, Y.: Trusted-region Subsequence Reduction for Designing Resilient Consensus Algorithms. IEEE Trans. Netw. Sci. Eng. 8(1), 259 (2021). https://doi.org/10.1109/TNSE.2020.3036755

    Article  MathSciNet  Google Scholar 

  65. Alam, T.: Blockchain-enabled deep reinforcement learning approach for performance optimization on the internet of things. Wirel. Personal Commun 126(2), 995 (2022). https://doi.org/10.1007/s11277-022-09780-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the Australian Research Council under Grants DP180103217, FT190100156, and LP200100056.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Chen, G. & Dong, Z.Y. Resilient distributed economic dispatch of smart grids under deception attacks. Nonlinear Dyn 112, 5421–5438 (2024). https://doi.org/10.1007/s11071-024-09320-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09320-5

Keywords

Mathematics Subject Classification

Navigation