Skip to main content
Log in

Riemann–Hilbert approach and N-soliton solutions of the coupled generalized Sasa–Satsuma equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the initial value problem for the coupled generalized Sasa–Satsuma equation. Firstly, based on the spectral analysis from Lax pair, we obtain desired analytic spectral functions, and a Riemann–Hilbert problem on the real line is formulated. Solving the special Riemann–Hilbert problem with reflectionless case, the N-soliton solutions of the coupled generalized Sasa–Satsuma equation are derived. In addition, by choosing suitable parameters, the structures of single-soliton solution and double-soliton solution are graphically presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Yang, J.K.: Nonlinear Waves in Intergrable and Nonintergrable Systems. SIAM, Philadelphia (2010)

    Book  Google Scholar 

  2. Zhang, Z., Yang, X.Y., Li, B.: Soliton molecules and novel smooth positons for the complex modified KdV equation. Appl. Math. Lett. 103, 106168 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wei, J.D., Tian, L.X., Zhou, J.B., Zhen, Z.L.: Existence, uniqueness and asymptotic behavior of traveling wave fronts for a generalized Fisher equation with nonlocal delay. Chaos Solitons Fractals 103, 536–543 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wei, J.D., Tian, L.X., Zhen, Z.L., Gao, W.W.: Inelastic collision of two solitons for generalized BBM equation with cubic nonlinearity. Electron. J. Differ. Equ. 147, 1–30 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Dong, M.J., Tian, L.X., Wei, J.D., Wang, Y.: Some localized wave solutions for the coupled Gerdjikov–Ivanov equation. Appl. Math. Lett. 122, 107483 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhou, J.B., Xu, J., Wei, J.D., Yang, X.Q.: Solitary wave solution to a singularly perturbed generalized Gardner equation with nonlinear terms of any order. Pramana J. Phys. 88, 69 (2017)

    Article  Google Scholar 

  7. Dong, M.J., Tian, L.X., Wei, J.D.: Infinitely many conservation laws and Darboux-dressing transformation for the three-coupled fourth-order nonlinear Schrödinger equations. Eur. Phys. J. Plus 137, 168 (2022)

    Article  Google Scholar 

  8. Dong, M.J., Tian, L.X., Wei, J.D.: Novel rogue waves for a mixed coupled nonlinear Schrödinger equation on Darboux-dressing transformation. East Asian J. Appl. Math. 12, 22–34 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wei, J.D., Zhen, Z.L., Chen, W.X., Tian, L.X.: Nonexistence of pure multi-solitons for the quartic gBBM equation. Commun. Nonlinear Sci. 55, 1–15 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bluman, G.W., Cole, J.D.: Similarity Methods for Differential Equations. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  11. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  12. Wang, J., Wu, H.: Rational solutions with zero background and algebraic solitons of three derivative nonlinear Schrödinger equations: bilinear approach. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07593-2

    Article  Google Scholar 

  13. Chen, S.Y., Yan, Z.Y.: The Hirota equation: Darboux transform of the Riemann–Hilbert problem and higher-order rogue waves. Appl. Math. Lett. 95, 65–71 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gu, C.H., Zhou, Z.X., Hu, H.S.: Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry. Springer, Berlin (2004)

    Google Scholar 

  15. Miura, R.M.: Bäcklund Transformations, The Inverse Scattering Method, Solitons, and Their Applications. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  16. Ablowitz, M.J., Segur, H.: Solitons and Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Book  MATH  Google Scholar 

  17. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wei, H.Y., Fan, E.G., Guo, H.D.: Riemann–Hilbert approach and nonlinear dynamics of the coupled higher-order nonlinear Schrödinger equation in the birefringent or two-mode fiber. Nonlinear Dyn. 104, 649–660 (2021)

    Article  Google Scholar 

  19. Anosov, D.V., Bolibruch, A.A.: The Riemann–Hilbert problem. Springer Fachmedien Wiesbaden, Steklov Institute of Mathematics (1994)

  20. Shchesnovich, V.S., Yang, J.K.: General soliton matrices in the Riemann–Hilbert problem for integrable nonlinear equations. J. Math. Phys. 44, 4604–4639 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, B.L., Ling, L.M.: Riemann–Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation. J. Math. Phys. 53, 073506 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, D.S., Zhang, D.J., Yang, J.K.: Integrable propertities of the general coupled nonlinear Schrödinger equations. J. Math. Phys. 51, 023510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu, J.P.: Riemann–Hilbert approach of the Newell-type long-wave-short-wave equation via the temporal-part spectral analysis. Nonlinear Dyn. 98, 749–760 (2019)

    Article  MATH  Google Scholar 

  24. Ma, W.X.: Application of the Riemann–Hilbert approach to the multicomponent AKNS integrable hierarchies. Nonlinear Anal. Real World Appl. 47, 1–17 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo, N., Xu, J., Wen, L.L., Fan, E.G.: Rogue wave and multi-pole solutions for the focusing Kundu–Eckhaus equation with nonzero background via Riemann–Hilbert problem method. Nonlinear Dyn. 103, 1851–1868 (2021)

    Article  Google Scholar 

  26. Wen, L.L., Zhang, N., Fan, E.G.: \(N\)-soliton solution of the Kundu-type equation via Riemann–Hilbert approach. Acta Math. Sci. 40, 113–126 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yan, X.W.: Riemann–Hilbert method and multi-soliton solutions of the Kundu-nonlinear Schrödinger equation. Nonlinear Dyn. 102, 2811–2819 (2020)

    Article  Google Scholar 

  28. Wang, X.B., Han, B.: Application of the Riemann–Hilbert method to the vector modified Korteweg-de Vries equation. Nonlinear Dyn. 99, 1363–1377 (2020)

  29. Akhmediev, N., Soto-Crespo, J.M., Devine, N.: Rogue wave spectra of the Sasa–Satsuma equation. Physica D 294, 37–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sasa, N., Satsuma, J.: New-type of solutions for a higher-order nonlinear evolution equation. J. Phys. Soc. Japan 60, 409–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, J.K., Kaup, D.J.: Squared eigenfunctions for the Sasa–Satsuma equation. J. Math. Phys. 50, 023504 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, J., Su, T., Geng, X., Li, R.: Riemann–Hilbert approach and \(N\)-soliton solutions for a new two-component Sasa–Satsuma equation. Nonlinear Dyn. 101, 597–609 (2020)

    Article  Google Scholar 

  34. Geng, X.G., Wu, J.P.: Riemann–Hilbert approach and \(N\)-soliton solutions for a generalized Sasa–Satsuma equation. Wave Motion 60, 62–72 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Geng, X.G., Li, Y.H., Wei, J.: Darboux transformation of a two-component generalized Sasa–Satsuma equation and explicit solutions. Math. Methods Appl. Sci. 44, 12727–12745 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nakkeeran, K., Porsezian, K., Sundaram, P.S., Mahalingam, A.: Optical solitons in N-coupled higher order nonlinear Schrödinger equations. Phys. Rev. Lett. 80, 1425–1428 (1998)

    Article  Google Scholar 

  37. Wu, J.P., Geng, X.G.: Inverse scattering transform of the coupled Sasa–Satsuma equation by Riemann–Hilbert approach. Commun. Theor. Phys. 67, 527–534 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for their valuable comments. This work is supported by the National Natural Science Foundation of China, Grant No.11901141.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Huang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Huang, L. Riemann–Hilbert approach and N-soliton solutions of the coupled generalized Sasa–Satsuma equation. Nonlinear Dyn 110, 3617–3627 (2022). https://doi.org/10.1007/s11071-022-07774-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07774-z

Keywords

Navigation