Skip to main content
Log in

Modal coupled vibration behavior of piezoelectric L-shaped resonator induced by added mass

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the mode coupling behavior and complex nonlinear dynamics of a piezoelectric driven L-shaped beam considering the added mass. To realize natural frequency adjustment and energy exchange among different modes, the added mass is delicately designed. The nonlinear governing equations, representing the first and second modes, are obtained by the Hamilton principle and Galerkin method. Perturbation and bifurcation analyses show that mode coupled vibration can lead to complex dynamic phenomena such as amplitude jump, amplitude saturation, double Hopf bifurcation and amplitude persistence. The physical conditions of amplitude jump, the critical voltage of amplitude saturation and the discriminant formula of double Hopf bifurcation are deduced theoretically and verified numerically. To be more convincing, an experimental test system is set up to observe the nonlinear dynamic behaviors. It is found that when the driving frequency is less than 26.18 Hz or more than 26.52 Hz, the first-order mode vibration jumps under the bifurcation driving voltage, which is qualitatively consistent with the theoretical results. Through mechanism investigation on subcritical Hopf bifurcation induced structure jumping phenomenon, the linear relationship between bifurcation voltage and perturbation mass is deduced. Both theoretical and experimental results demonstrate that small disturbance of added mass can significantly affect the bifurcation voltage of modal coupled vibration, which can realize the detection of micro-mass. The research results of this paper provide theoretical basis and experimental support for the development of micro-resonance device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

\(\rho\) :

Density of the L-shapedbeam, 8300 kg/m3

b :

Width of the L- shaped beam and piezoelectric plate, 4000 μm

E b :

Young’s Modulus of the L- shaped beam, 128 Gpa

E p :

Young’s Modulus of the piezoelectric plate, 63 Gpa

A 1 :

The cross-sectional area of the horizontal beam

I 1 :

Moment of inertia of the horizontal beam

A 2 :

The cross-sectional area of the vertical beam

I 2 :

Moment of inertia of the vertical beam

L 1 :

The length of the horizontal beam

L 2 :

The length of the vertical beam

\(\hat{w}_{1}\) :

The transverse displacement of the horizontal beam

\(\hat{w}_{2}\) :

The transverse displacement of the vertical beam

\(\hat{w}_{{\text{c}}}\) :

Lateral displacement of corner point

\(\hat{v}_{{\text{c}}}\) :

Longitudinal displacement of corner point

\(\hat{v}_{1}\) :

The longitudinal displacement of the horizontal beam

\(\hat{v}_{2}\) :

The longitudinal displacement of the vertical beam

h b1 :

Thickness of the horizontal beam

h b2 :

Thickness of the vertical beam

h p :

Thickness of the piezoelectric plate

d 31 :

Piezoceramics constant, 275

\(s_{1}\) :

Position of horizontal beam

\(s_{2}\) :

Position of vertical beam

\(s_{{\text{c}}}\) :

Position of corner point

\(s_{{\text{a}}}\) :

The starting position of the piezoelectric plate

\(s_{{\text{b}}}\) :

The terminal position of the piezoelectric plate

\(\theta_{{\text{c}}}\) :

The angle of rotation of the cross section at corner point

\(l_{1}\) :

The position of added mass

\(\hat{m}\) :

The added mass

References

  1. Kumar, V., Boley, J.W., Yang, Y.S., Ekowaluyo, H., Miller, J.K., Chiu, G.T.C., Rhoads, J.F.: Modeling, analysis, and experimental validation of a bifurcation-based microsensor. J. Microelectromech. Syst. 21, 549–558 (2012)

    Article  Google Scholar 

  2. Nguyen, V.N., Baguet, S., Lamarque, C.H., Dufour, R.: Bifurcation-based micro-/nanoelectromechanical mass detection. Nonlinear Dynam. 79, 647–662 (2015)

    Article  Google Scholar 

  3. Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro-and nanoresonators. J. Dyn. Syst-T. ASME. 132, 1509–1538 (2010)

    Article  Google Scholar 

  4. Potekin, R., Kim, S., Mcfarland, D.M., Bergman, L., Cho, H., Vakakis, A.F.: A micromechanical mass sensing method based on amplitude tracking within an ultra-wide broadband resonance. Nonlinear Dynam. 92, 287–302 (2018)

    Article  Google Scholar 

  5. Zhou, S.: Fully coupled model for frequency response simulation of miniaturized cantilever-based photoacoustic gas sensors. Sensors-Basel. 19, 4772 (2019)

    Article  Google Scholar 

  6. Elshurafa, A.M., Khirallah, K., Tawfik, H.H., Emira, A., Abdel Aziz, A.K.S., Sedky, S.M.: Nonlinear dynamics of spring softening and hardening in folded-mems comb drive resonators. J. Microelectromech. S. 20, 943 (2011)

    Article  Google Scholar 

  7. Tchakui, M.V., Fondjo, V.Y.T., Woafo, P.: Bifurcation structures in three unidirectionally coupled electromechanical systems with no external signal and with regenerative process. Nonlinear Dynam. 84, 1961–1972 (2016)

    Article  Google Scholar 

  8. Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.: A reduced order model for electrically actuated microbeam-based MEMS. J. Microelectromech. Syst. 12, 672–680 (2003)

    Article  Google Scholar 

  9. Hamed, F., Paidoussis, M.P., Misra, A.K.: Nonlinear behaviour and mass detection sensitivity of geometrically imperfect cantilevered carbon nanotube resonators. Commun. Nonlinear. Sci. 65, 272–298 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ramini, A.H., Hajjaj, A.Z., Younis, M.I.: supplementary material for Tunable resonators for nonlinear modal interactions. Sci. Rep. 6, 34717 (2016)

    Article  Google Scholar 

  11. Hajjaj, A.Z., Jaber, N., Hafiz, M.A.A., Ilyas, S., Younis, M.I.: Multiple internal resonances in MEMS arch resonators. Phys. Lett. A. 384, 3393–3398 (2018)

    Article  Google Scholar 

  12. Li, L., Han, J.X., Zhang, Q.C., Liu, C.C., Guo, Z.H.: Nonlinear dynamics and parameter identification of electrostatically coupled resonators. Int. J. Nonlin. Mech. 110, 104–114 (2019)

    Article  Google Scholar 

  13. Li, L., Zhang, Q.C., Wang, W., Han, J.X.: Nonlinear coupled vibration of electrostatically actuated clamped-clamped microbeams under higher-order modes excitation. Nonlinear Dynam. 90, 1593–1606 (2017)

    Article  Google Scholar 

  14. Meesala, V.C., Hajj, M.R., Abdel-Rahman, E.: Bifurcation-based MEMS mass sensors. Int. J Mech. Sci. 180, 105705 (2020)

    Article  Google Scholar 

  15. Xia, C., Wang, D.F., Ono, T., Itoh, T., Maeda, R.: A mass multi-warning scheme based on one-to-three internal resonance. Mech. Syst. Signal. Pr. 142, 106784 (2020)

    Article  Google Scholar 

  16. Li, L., Liu, H.B., Shao, M.Y., Ma, C.C.: A novel frequency stabilization approach for mass detection in nonlinear mechanically coupled resonant sensors. Micromachines-Basel. 12, 178 (2021)

    Article  Google Scholar 

  17. Wang, X.F., Wei, X.Y., Pu, D., Huan, R.H.: Single-electron detection utilizing coupled nonlinear microresonators. Microsyst. Nanoeng. 6, 327–333 (2020)

    Article  Google Scholar 

  18. Ilyas, S., Chappanda, K., Younis, M.I.: Exploiting nonlinearities of micro-machined resonators for filtering applications. Appl. Phys. Lett. 110, 1–4 (2017)

    Article  Google Scholar 

  19. Li, H., Preidikman, S., Balachandran, B., Mote, C.D.: Nonlinear free and forced oscillations of piezoelectric microresonators. J. Micromech. Microeng. 16, 356–367 (2006)

    Article  Google Scholar 

  20. Atabak, S., Behraad, B., Farid, G.: Analytical modeling and experimental verification of nonlinear mode coupling in a decoupled tuning fork microresonator. J. Microelectromech. S. 27, 398–406 (2018)

    Article  Google Scholar 

  21. Zhao, Z.Q., Wang, D.F., Lou, X.Q., Ono, T., Itoh, T.: An adjustable pre-stress based sensitivity enhancement scheme for cantilever-based resonant sensors. Mech. Syst. Signal. Pr. 146, 107002 (2021)

    Article  Google Scholar 

  22. Xia, C., Wang, D.F., Itoh, T., Esashi, M.: Internal resonance in coupled oscillators-Part II: A synchronous sensing scheme for both mass perturbation and driving force with duffing nonlinearity. Mech. Syst. Signal. Pr. 160, 107887 (2021)

    Article  Google Scholar 

  23. Yu, T.J., Zhang, W., Yang, X.D.: Nonlinear dynamics of flexible L-shaped beam based on exact modes truncation. Int. J. Bifurcat. Chaos. 27, 1750035 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xie, Z.Q., Huang, B.R., Fan, K.Q., Zhou, S.X., Huang, W.B.: A magnetically coupled nonlinear T-shaped piezoelectric energy harvester with internal resonance. Smart. Mater. Struct. 28, 11LT01 (2019)

    Article  Google Scholar 

  25. Dick, A.J., Balachandran, B., Mote, C.D.: Intrinsic localized modes in microresonator arrays and their relationship to nonlinear vibration modes. Nonlinear Dynam. 54, 13–29 (2008)

    Article  MATH  Google Scholar 

  26. Ramakrishnan, S., Balachandran, B.: Energy localization and white noise-induced enhancement of Response in a Micro-scale Oscillator Array. Nonlinear Dynam. 62, 1–16 (2010)

    Article  MATH  Google Scholar 

  27. Dick, A.J., Balachandran, B., Mote, C.D.: Localization in microresonator arrays: influence of natural frequency tuning. J. Comput. Nonlinear Dynam. 5, 011002 (2010)

    Article  Google Scholar 

  28. Balachandran, B., Nayfeh, A.H.: Nonlinear motions of beam-mass structure. Nonlinear Dynam. 1, 39–61 (1990)

    Article  Google Scholar 

  29. Balachandran, B., Nayfeh, A.H.: Observations of modal interactions in resonantly forced beam-mass structures. Nonlinear Dynam. 2, 77–117 (1991)

    Article  Google Scholar 

  30. Hajjaj, A.Z., Jaber, N., Ilyas, S., Alfosail, F., Younis, M.I.: Linear and nonlinear dynamics of micro and nano-resonators: review of recent advances. Int. J. Nonlin. Mech. 119, 103328 (2019)

    Article  Google Scholar 

  31. Monstaseri, M.H., Suan, H., Zhao, C., Seshia, A.A.: A review on coupled resonators for sensing applications utilizing mode localization. Sensor. Actuat. A-phys. 249, 93–111 (2016)

    Article  Google Scholar 

  32. Dilena, M., Fedele, D.M., Fernandez, J., Morassi, A., Zaera, R.: Mass detection in nanobeams from bending resonant frequency shifts. Mech. Syst. Signal. Pr. 116, 261–276 (2019)

    Article  Google Scholar 

  33. Bouchaala, A., Nayfeh, A.H., Younis, M.I.: Analytical study of the frequency shifts of micro and nano clamped-clamped beam resonators due to an added mass. Meccanica 52, 333–348 (2017)

    Article  MATH  Google Scholar 

  34. Erturk, A., Renno, J.M., Inman, D.J.: Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J. Intell. Mater. Syst. Struct. 20, 529–544 (2009)

    Article  Google Scholar 

  35. Chen, L.Q., Jiang, W.A., Panyam, M., Daqaq, M.F.: A broadband internally resonant vibratory energy harvester. J. Vib. Acoust. 138, 061007 (2016)

    Article  Google Scholar 

  36. Qiao, Y., Arabi, M., Xu, W., Zhang, H.X., Abdel-Rahman, E.M.: The impact of thermal-noise on bifurcation MEMS sensors. Mech. Syst. Signal. Pr. 161, 107941 (2021)

    Article  Google Scholar 

  37. Alkaddour, M., Ghommem, M., Najar, F.: Nonlinear analysis and effectiveness of weakly coupled microbeams for mass sensing applications. Nonlinear Dynam. 104, 1–15 (2021)

    Article  Google Scholar 

  38. Baguet, S., Nguyen, V.N., Grenat, C., Lamarque, C.H., Dufour, R.: Nonlinear dynamics of micromechanical resonator arrays for mass sensing. Nonlinear Dynam. 95, 1203–1220 (2019)

    Article  Google Scholar 

  39. Younis, M.I., Alsaleem, F.: Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. J. Comput. Nonlinear Dyn. 4, 021010 (2009)

    Article  Google Scholar 

  40. Li, L., Zhang, W.M., Wang, J., Hu, K.M., Shao, M.Y., Peng, B.: Bifurcation behavior for mass detection in nonlinear electrostatically coupled resonators. Int. J. Nonlin. Mech. 119, 103366 (2019)

    Article  Google Scholar 

  41. Kumar, V., Boley, J.W., Yang, Y., Ekowaluyo, H., Rhoads, J.F.: Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers. Appl. Phys. Lett. 98, 153510 (2011)

    Article  Google Scholar 

  42. Hasan, M.H., Alsaleem, F.M., Ouaked, H.M.: Novel threshold pressure sensors based on nonlinear dynamics of MEMS resonators. J. Micromech. Microeng. 28, 065007 (2018)

    Article  Google Scholar 

  43. Harne, R.L., Wang, K.W.: A bifurcation-based coupled linear-bistable system for microscale mass sensing. J. Sound. Vib. 333, 2241–2252 (2014)

    Article  Google Scholar 

  44. Najar, F., Ghommem, M., Abdel-Rahman, E.M.: Arch microbeam bifurcation gas sensors. Nonlinear Dynam. 104, 923–940 (2021)

    Article  Google Scholar 

  45. Antonio, D., Zanette, D.H., López, D.: Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3, 806 (2012)

    Article  Google Scholar 

  46. Harrison, R.T., Walter, V., Kacem, N., Moal, P.L., Joseph, L., Bourbon, G.: Enhancing the linear dynamic range of a mode-localized MEMS mass sensor with repulsive electrostatic actuation. J. Smart. Mater. Struct. 30, 07LT01 (2021)

    Article  Google Scholar 

  47. Jrad, M., Younis, M.I., Najar, F.: Modeling and design of an electrically actuated resonant microswitch. J. Vib. Control. 22, 559–569 (2016)

    Article  MathSciNet  Google Scholar 

  48. COMSOL: http://www.comsol.com/.

  49. Zhang, W., Meng, G., Li, H.: Adaptive vibration control of micro-cantilever beamwith piezoelectric actuator in MEMS. Int J Adv Manuf Technol. 28, 321–327 (2006)

    Article  Google Scholar 

  50. Jaber, N., Ramini, A., Carreno, A.A.A., Younis, M.I.: Higher order modes excitation of micromachined clamped-clamped beams: Experimental and analytical investigation. J. Micromech. Microeng. 26, 025008 (2016)

    Article  Google Scholar 

  51. Nayfeh, A.H.: Nonlinear Interactions. Wiley, New York (2000)

    MATH  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (Grant No. 11902182), the Program of Shanghai Academic/Technology Research Leader (19XD1421600), Natural Science Foundation of Shandong Province (ZR2019BA001), the China Postdoctoral Science Foundation (2019M651485) and the Natural Science Foundation of Tianjin (20JCQNJC01070).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Theoretical analysis and numerical simulation were performed by Lei Li, Hanbiao Liu, Wenming Zhang and Chen Liu. The experimental part was completed by Faguang Wang and Jianxin Han. The first draft of the manuscript was written by Lei Li, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wenming Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 2511 KB)

Appendix 1

Appendix 1

The solutions of Eqs. (18) and (19) can be expressed in the following form

$$ \begin{gathered} w_{1} = \sum\limits_{i = 1}^{M} {\phi_{1i} (x_{1} )\eta_{i} (t)} \hfill \\ \overline{w}_{2} = \sum\limits_{i = 1}^{M} {\phi_{2i} (x_{2} )\eta_{i} (t)} \hfill \\ \end{gathered} $$
(39)

where \(\phi_{1i} (x_{1} )\) and \(\phi_{2i} (x_{2} )\) represent the linear undamped mode shapes of the horizontal and vertical beams; \(\eta_{i} (t)\) represent the deformation coefficient of the i-th mode. Since horizontal and vertical beams can produce coupled vibration behavior, their frequencies should be consistent, and we assume that each mode function satisfies the following expressions

$$ \begin{gathered} { - }\beta_{i}^{2} \phi_{1i} (x_{1} ) + \phi_{1i}^{{{\text{iv}}}} (x_{1} ){ = }0 \hfill \\ { - }\beta_{i}^{2} \phi_{2i} (x_{2} ) + \frac{{h_{b2}^{2} L_{1}^{4} }}{{h_{b1}^{2} L_{2}^{4} }}\phi_{2i}^{{{\text{iv}}}} (x_{2} ){ = }0 \hfill \\ \end{gathered} $$
(40)

Through Eq. (20), the boundary conditions of the mode are as follows

$$ \begin{gathered} \phi^{\prime}_{1i} (0) = \phi_{1i} (0) = 0 \hfill \\ \phi_{2i} (0) = \phi^{\prime\prime}_{2i} (1) = \phi^{\prime\prime\prime}_{2i} (1) = 0 \hfill \\ \phi^{\prime}_{2i} (0){ = }\phi^{\prime}_{1i} (1) \hfill \\ \phi^{\prime\prime\prime}_{1i} (1){ = } - \frac{{h_{b2} L_{2} }}{{h_{b1} L_{1} }}\beta_{i}^{2} \phi_{1i} (1) \hfill \\ \phi^{\prime\prime}_{1i} (1){ = }\frac{{h_{b2}^{3} L_{1} }}{{h_{b1}^{3} L_{2} }}\phi^{\prime\prime}_{2i} (0) \hfill \\ \end{gathered} $$

Introduce expressions for modal functions

$$ \begin{gathered} \phi_{1i} (x_{1} ){ = }A_{1i} \sin \lambda_{1i} x_{1} + B_{1i} \cos \lambda_{1i} x_{1} + C_{1i} sh\lambda_{1i} x_{1} + D_{1i} ch\lambda_{1i} x_{1} \hfill \\ \phi_{2i} (x_{2} ){ = }A_{2i} \sin \lambda_{2i} x_{2} + B_{2i} \cos \lambda_{2i} x_{2} + C_{2i} sh\lambda_{2i} x_{2} + D_{2i} ch\lambda_{2i} x_{2} \hfill \\ \end{gathered} $$
(41)

From Eqs. (4041), we derive the following expression

$$ \lambda_{2i} L_{1} \sqrt {h_{b2} } = \lambda_{1i} L_{2} \sqrt {h_{b1} } $$
(42)

Here, Fig. 

Fig. 13
figure 13

First and second mode shapes obtained by the Eq. (41). a: Transverse deformation of the horizontal beam; b: Transverse deformation of the vertical beam)

13 shows the first and second mode shapes obtained by the mathematical model. It is found that when the first mode vibrates, the vertical beam and the horizontal beam are in phase. When the second mode vibrates, the vertical beam and the horizontal beam are out of phase, which is consistent with COMSOL simulation results (Fig. 4).

Considering the first two modes, Eq. (39) can be rewritten in the following form

$$ \begin{gathered} w_{1} = \phi_{11} (x_{1} )\eta_{1} (t){ + }\phi_{12} (x_{1} )\eta_{2} (t) \hfill \\ \overline{w}_{2} = \phi_{21} (x_{2} )\eta_{1} (t){ + }\phi_{22} (x_{2} )\eta_{2} (t) \hfill \\ \end{gathered} $$
(43)

Substituting Eq. (43) into the resulting Eqs. (18) and (19), multiplying by \(\phi_{1i} (x_{1} )\), \(\phi_{2i} (x_{2} )\), and integrating the outcome from 0 to 1, yield

$$ \begin{gathered} \ddot{\eta }_{1} [\phi_{11}^{2} (x_{1} - \frac{{l_{1} }}{{L_{1} }})m + \int_{0}^{1} {\phi_{11} \phi_{11} dx_{1} } {] + }\beta_{1}^{2} \eta_{1} \int_{0}^{1} {\phi_{11} \phi_{11} dx_{1} } + c_{1n} \eta_{1} \int_{0}^{1} {\phi_{11} \phi_{11} dx_{1} } \hfill \\ - \frac{{L_{2}^{2} h_{b2} }}{{L_{1}^{2} h_{b1} }}(\ddot{\eta }_{1} \eta_{1} \int_{0}^{1} {\phi_{21} dx_{2} } \int_{0}^{1} {\phi^{\prime\prime}_{11} \phi_{11} dx_{1} } + \ddot{\eta }_{1} \eta_{2} \int_{0}^{1} {\phi_{21} dx_{2} } \int_{0}^{1} {\phi^{\prime\prime}_{12} \phi_{11} dx_{1} } \hfill \\ + \ddot{\eta }_{2} \eta_{1} \int_{0}^{1} {\phi_{22} dx_{2} } \int_{0}^{1} {\phi^{\prime\prime}_{11} \phi_{11} dx_{1} } + \ddot{\eta }_{2} \eta_{2} \int_{0}^{1} {\phi_{22} dx_{2} } \int_{0}^{1} {\phi^{\prime\prime}_{12} \phi_{11} dx_{1} } ) \hfill \\ = \alpha V\cos (\Omega t)[\phi^{\prime}_{11} (x_{b} ) - \phi^{\prime}_{11} (x_{a} )] \hfill \\ \end{gathered} $$
(44)
$$ \begin{gathered} \ddot{\eta }_{1} \int_{0}^{1} {\phi_{21} \phi_{21} dx_{1} } { + }\beta_{1}^{2} \eta_{1} \int_{0}^{1} {\phi_{21} \phi_{21} dx_{1} } + c_{2n} \eta_{1} \int_{0}^{1} {\phi_{21} \phi_{21} dx_{1} } \hfill \\ + \frac{{L_{1} }}{{L_{2} }}[\ddot{\eta }_{1} \eta_{1} \int_{0}^{1} {(1 - x_{2} )\phi_{11} (1)\phi^{\prime\prime}_{21} \phi_{21} dx_{2} } + \ddot{\eta }_{1} \eta_{2} \int_{0}^{1} {(1 - x_{2} )\phi_{11} (1)\phi^{\prime\prime}_{22} \phi_{21} dx_{2} } \hfill \\ + \ddot{\eta }_{2} \eta_{1} \int_{0}^{1} {(1 - x_{2} )\phi_{12} (1)\phi^{\prime\prime}_{21} \phi_{21} dx_{2} } + \ddot{\eta }_{2} \eta_{2} \int_{0}^{1} {(1 - x_{2} )\phi_{12} (1)\phi^{\prime\prime}_{22} \phi_{21} dx_{2} } ] \hfill \\ - \frac{{L_{1} }}{{L_{2} }}[\ddot{\eta }_{1} \eta_{1} \int_{0}^{1} {\phi_{11} (1)\phi^{\prime}_{21} \phi_{21} dx_{2} } + \ddot{\eta }_{1} \eta_{2} \int_{0}^{1} {\phi_{11} (1)\phi^{\prime}_{22} \phi_{21} dx_{2} } \hfill \\ + \ddot{\eta }_{2} \eta_{1} \int_{0}^{1} {\phi_{12} (1)\phi^{\prime}_{21} \phi_{21} dx_{2} } + \ddot{\eta }_{2} \eta_{2} \int_{0}^{1} {\phi_{12} (1)\phi^{\prime}_{22} \phi_{21} dx_{2} } ] \hfill \\ { + }\frac{{L_{1} }}{{L_{2} }}(\dot{\eta }_{1}^{2} \int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{11} dx_{1} } + \dot{\eta }_{2}^{2} \int_{0}^{1} {\phi^{\prime}_{12} \phi^{\prime}_{12} dx_{1} } + 2\dot{\eta }_{1} \dot{\eta }_{2} \int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{12} dx_{1} } )\int_{0}^{1} {\phi_{21} dx_{2} } \hfill \\ { + }\frac{{L_{1} }}{{L_{2} }}(\ddot{\eta }_{1} \eta_{1} \int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{11} dx_{1} } + \ddot{\eta }_{2} \eta_{2} \int_{0}^{1} {\phi^{\prime}_{12} \phi^{\prime}_{12} dx_{1} } + \ddot{\eta }_{1} \eta_{2} \int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{12} dx_{1} } \hfill \\ + \eta_{1} \ddot{\eta }_{2} \int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{12} dx_{1} } )\int_{0}^{1} {\phi_{21} dx_{2} } = 0 \hfill \\ \end{gathered} $$
(45)
$$ \begin{gathered} \ddot{\eta }_{2} [\phi_{12}^{2} (x_{1} - \frac{{l_{1} }}{{L_{1} }})m + \int_{0}^{1} {\phi_{12} \phi_{12} dx_{1} } {] + }\beta_{2}^{2} \eta_{2} \int_{0}^{1} {\phi_{12} \phi_{12} dx_{1} } + c_{1n} \eta_{2} \int_{0}^{1} {\phi_{12} \phi_{12} dx_{1} } \hfill \\ - \frac{{L_{2}^{2} h_{b2} }}{{L_{1}^{2} h_{b1} }}(\ddot{\eta }_{1} \eta_{1} \int_{0}^{1} {\phi_{21} dx_{2} } \int_{0}^{1} {\phi^{\prime\prime}_{11} \phi_{12} dx_{1} } + \ddot{\eta }_{1} \eta_{2} \int_{0}^{1} {\phi_{21} dx_{2} } \int_{0}^{1} {\phi^{\prime\prime}_{12} \phi_{12} dx_{1} } \hfill \\ + \ddot{\eta }_{2} \eta_{1} \int_{0}^{1} {\phi_{22} dx_{2} } \int_{0}^{1} {\phi^{\prime\prime}_{11} \phi_{12} dx_{1} } + \ddot{\eta }_{2} \eta_{2} \int_{0}^{1} {\phi_{22} dx_{2} } \int_{0}^{1} {\phi^{\prime\prime}_{12} \phi_{12} dx_{1} } ) \hfill \\ = \alpha V\cos (\Omega t)[\phi^{\prime}_{12} (x_{b} ) - \phi^{\prime}_{12} (x_{a} )] \hfill \\ \end{gathered} $$
(46)
$$ \begin{gathered} \ddot{\eta }_{2} \int_{0}^{1} {\phi_{22} \phi_{22} dx_{1} } { + }\beta_{2}^{2} \eta_{2} \int_{0}^{1} {\phi_{22} \phi_{22} dx_{1} } + c_{2n} \eta_{2} \int_{0}^{1} {\phi_{22} \phi_{22} dx_{1} } + \frac{{L_{1} }}{{L_{2} }}[\ddot{\eta }_{1} \eta_{1} \int_{0}^{1} {(1 - x_{2} )\phi_{11} (1)\phi^{\prime\prime}_{21} \phi_{22} dx_{2} } + \hfill \\ \ddot{\eta }_{1} \eta_{2} \int_{0}^{1} {(1 - x_{2} )\phi_{11} (1)\phi^{\prime\prime}_{22} \phi_{22} dx_{2} } + \ddot{\eta }_{2} \eta_{1} \int_{0}^{1} {(1 - x_{2} )\phi_{12} (1)\phi^{\prime\prime}_{21} \phi_{22} dx_{2} } + \ddot{\eta }_{2} \eta_{2} \int_{0}^{1} {(1 - x_{2} )\phi_{12} (1)\phi^{\prime\prime}_{22} \phi_{22} dx_{2} } ] \hfill \\ - \frac{{L_{1} }}{{L_{2} }}[\ddot{\eta }_{1} \eta_{1} \int_{0}^{1} {\phi_{11} (1)\phi^{\prime}_{21} \phi_{22} dx_{2} } + \ddot{\eta }_{1} \eta_{2} \int_{0}^{1} {\phi_{11} (1)\phi^{\prime}_{22} \phi_{22} dx_{2} } + \ddot{\eta }_{2} \eta_{1} \int_{0}^{1} {\phi_{12} (1)\phi^{\prime}_{21} \phi_{22} dx_{2} } \hfill \\ + \ddot{\eta }_{2} \eta_{2} \int_{0}^{1} {\phi_{12} (1)\phi^{\prime}_{22} \phi_{22} dx_{2} } ] + \frac{{L_{1} }}{{L_{2} }}(\dot{\eta }_{1}^{2} \int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{11} dx_{1} } + \dot{\eta }_{2}^{2} \int_{0}^{1} {\phi^{\prime}_{12} \phi^{\prime}_{12} dx_{1} } + 2\dot{\eta }_{1} \dot{\eta }_{2} \int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{12} dx_{1} } )\int_{0}^{1} {\phi_{22} dx_{2} } \hfill \\ + \frac{{L_{1} }}{{L_{2} }}(\ddot{\eta }_{1} \eta_{1} \int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{11} dx_{1} } + \ddot{\eta }_{2} \eta_{2} \int_{0}^{1} {\phi^{\prime}_{12} \phi^{\prime}_{12} dx_{1} } + \ddot{\eta }_{1} \eta_{2} \int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{12} dx_{1} } + \eta_{1} \ddot{\eta }_{2} \int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{12} dx_{1} } )\int_{0}^{1} {\phi_{22} dx_{2} } = 0 \hfill \\ \end{gathered} $$
(47)

According to the principle of minimum energy, the first two modes are superimposed to obtain the two degrees of freedom equations of motion, which represent the first-order vibration behavior and the second-order vibration behavior of L-shaped beam, respectively.

$$ \begin{gathered} \ddot{\eta }_{1} { + }\omega_{1}^{2} \eta_{1} + c\dot{\eta }_{1} { + }g_{11} \dot{\eta }_{1}^{2} + g_{12} \dot{\eta }_{1} \dot{\eta }_{2} + g_{22} \dot{\eta }_{2}^{2} + s_{11} \ddot{\eta }_{1} \eta_{1} + s_{12} \ddot{\eta }_{1} \eta_{2} \hfill \\ + s_{21} \ddot{\eta }_{2} \eta_{1} + s_{22} \ddot{\eta }_{2} \eta_{2} = f\cos \Omega t \hfill \\ \end{gathered} $$
(48)
$$ \begin{gathered} \ddot{\eta }_{2} { + }\omega_{2}^{2} \eta_{2} + c\dot{\eta }_{2} { + }\overline{g}_{11} \dot{\eta }_{1}^{2} + \overline{g}_{12} \dot{\eta }_{1} \dot{\eta }_{2} + \overline{g}_{22} \dot{\eta }_{2}^{2} + \overline{s}_{11} \ddot{\eta }_{1} \eta_{1} + \overline{s}_{12} \ddot{\eta }_{1} \eta_{2} \hfill \\ + \overline{s}_{21} \ddot{\eta }_{2} \eta_{1} + \overline{s}_{22} \ddot{\eta }_{2} \eta_{2} = \overline{f}\cos \Omega t \hfill \\ \end{gathered} $$
(49)

where \(c_{1n} = c_{2n} = c\).

In this article, we express the motion state of the resonator by the lateral displacement \(\overline{w}_{2} (1,t)\) of the free end of the vertical beam. The first modal displacement and the second modal displacement can be expressed as \(\phi_{21} (1)\eta_{1} (t)\) and \(\phi_{22} (1)\eta_{2} (t)\), respectively. The specific coefficients are as follows:

$$ M_{1} = \phi_{11}^{2} (x_{1} - \frac{{l_{1} }}{{L_{1} }})m + \int_{0}^{1} {\phi_{11} \phi_{11} dx_{1} } + \int_{0}^{1} {\phi_{21} \phi_{21} dx_{1} } $$
(50)
$$ \omega_{1}^{2} = \frac{{\beta_{1}^{2} \int_{0}^{1} {\phi_{21} \phi_{21} dx_{1} } + \beta_{1}^{2} \int_{0}^{1} {\phi_{11} \phi_{11} dx_{1} } }}{{M_{1} }}\; $$
(51)
$$ g_{11} = \frac{{\frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{11} dx_{1} } \int_{0}^{1} {\phi_{21} dx_{2} } }}{{M_{1} }}\; $$
(52)
$$ g_{12} = \frac{{2\frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{12} dx_{1} } \int_{0}^{1} {\phi_{21} dx_{2} } }}{{M_{1} }} $$
(53)
$$ g_{22} = \frac{{\frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi^{\prime}_{12} \phi^{\prime}_{12} dx_{1} } \int_{0}^{1} {\phi_{21} dx_{2} } }}{{M_{1} }} $$
(54)
$$ s_{11} = \frac{\begin{gathered} \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {(1 - x_{2} )\phi_{11} (1)\phi^{\prime\prime}_{21} \phi_{21} dx_{2} } - \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi_{11} (1)\phi^{\prime}_{21} \phi_{21} dx_{2} } \hfill \\ + \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{11} dx_{1} } \int_{0}^{1} {\phi_{21} dx_{2} } - \frac{{L_{2}^{2} h_{b2} }}{{L_{1}^{2} h_{b1} }}\int_{0}^{1} {\phi_{21} dx_{2} } \int_{0}^{1} {\phi^{\prime\prime}_{11} \phi_{11} dx_{1} } \hfill \\ \end{gathered} }{{M_{1} }} $$
(55)
$$ s_{12} = \frac{\begin{gathered} \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {(1 - x_{2} )\phi_{11} (1)\phi^{\prime\prime}_{22} \phi_{21} dx_{2} } - \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi_{11} (1)\phi^{\prime}_{22} \phi_{21} dx_{2} } \hfill \\ + \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{12} dx_{1} } \int_{0}^{1} {\phi_{21} dx_{2} } - \frac{{L_{2}^{2} h_{b2} }}{{L_{1}^{2} h_{b1} }}\int_{0}^{1} {\phi_{21} dx_{2} } \int_{0}^{1} {\phi^{\prime\prime}_{12} \phi_{11} dx_{1} } \hfill \\ \end{gathered} }{{M_{1} }} $$
(56)
$$ s_{21} = \frac{\begin{gathered} \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {(1 - x_{2} )\phi_{12} (1)\phi^{\prime\prime}_{21} \phi_{21} dx_{2} } - \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi_{12} (1)\phi^{\prime}_{21} \phi_{21} dx_{2} } \hfill \\ + \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{12} dx_{1} } \int_{0}^{1} {\phi_{21} dx_{2} } - \frac{{L_{2}^{2} h_{b2} }}{{L_{1}^{2} h_{b1} }}\int_{0}^{1} {\phi_{22} dx_{2} } \int_{0}^{1} {\phi^{\prime\prime}_{11} \phi_{11} dx_{1} } \hfill \\ \end{gathered} }{{M_{1} }} $$
(57)
$$ s_{22} = \frac{\begin{gathered} \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {(1 - x_{2} )\phi_{12} (1)\phi^{\prime\prime}_{22} \phi_{21} dx_{2} } - \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi_{12} (1)\phi^{\prime}_{22} \phi_{21} dx_{2} } \hfill \\ + \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi^{\prime}_{12} \phi^{\prime}_{12} dx_{1} } \int_{0}^{1} {\phi_{21} dx_{2} } - \frac{{L_{2}^{2} h_{b2} }}{{L_{1}^{2} h_{b1} }}\int_{0}^{1} {\phi_{22} dx_{2} } \int_{0}^{1} {\phi^{\prime\prime}_{12} \phi_{11} dx_{1} } \hfill \\ \end{gathered} }{{M_{1} }} $$
(58)
$$ f = \frac{{\alpha V[\phi^{\prime}_{11} (x_{b} ) - \phi^{\prime}_{11} (x_{a} )]}}{{M_{1} }} $$
(59)
$$ M_{2} = \phi_{12}^{2} (x_{1} - \frac{{l_{1} }}{{L_{1} }})m + \int_{0}^{1} {\phi_{12} \phi_{12} dx_{1} } + \int_{0}^{1} {\phi_{22} \phi_{22} dx_{1} } $$
(60)
$$ \omega_{2}^{2} = \frac{{\beta_{2}^{2} \int_{0}^{1} {\phi_{22} \phi_{22} dx_{1} } + \beta_{2}^{2} \int_{0}^{1} {\phi_{12} \phi_{12} dx_{1} } }}{{M_{2} }}\; $$
(61)
$$ \overline{g}_{11} = \frac{{\frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{11} dx_{1} } \int_{0}^{1} {\phi_{22} dx_{2} } }}{{M_{2} }}\; $$
(62)
$$ \overline{g}_{12} = \frac{{2\frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{12} dx_{1} } \int_{0}^{1} {\phi_{22} dx_{2} } }}{{M_{2} }} $$
(63)
$$ \overline{g}_{22} = \frac{{\frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi^{\prime}_{12} \phi^{\prime}_{12} dx_{1} } \int_{0}^{1} {\phi_{22} dx_{2} } }}{{M_{2} }} $$
(64)
$$ \overline{s}_{11} = \frac{\begin{gathered} \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {(1 - x_{2} )\phi_{11} (1)\phi^{\prime\prime}_{21} \phi_{22} dx_{2} } - \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi_{11} (1)\phi^{\prime}_{21} \phi_{22} dx_{2} } \hfill \\ + \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{11} dx_{1} } \int_{0}^{1} {\phi_{22} dx_{2} } - \frac{{L_{2}^{2} h_{b2} }}{{L_{1}^{2} h_{b1} }}\int_{0}^{1} {\phi_{21} dx_{2} } \int_{0}^{1} {\phi^{\prime\prime}_{11} \phi_{12} dx_{1} } \hfill \\ \end{gathered} }{{M_{2} }} $$
(65)
$$ \overline{s}_{12} = \frac{\begin{gathered} \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {(1 - x_{2} )\phi_{11} (1)\phi^{\prime\prime}_{22} \phi_{22} dx_{2} } - \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi_{11} (1)\phi^{\prime}_{22} \phi_{22} dx_{2} } \hfill \\ + \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{12} dx_{1} } \int_{0}^{1} {\phi_{22} dx_{2} } - \frac{{L_{2}^{2} h_{b2} }}{{L_{1}^{2} h_{b1} }}\int_{0}^{1} {\phi_{21} dx_{2} } \int_{0}^{1} {\phi^{\prime\prime}_{12} \phi_{12} dx_{1} } \hfill \\ \end{gathered} }{{M_{2} }} $$
(66)
$$ \overline{s}_{21} = \frac{\begin{gathered} \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {(1 - x_{2} )\phi_{12} (1)\phi^{\prime\prime}_{21} \phi_{22} dx_{2} } - \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi_{12} (1)\phi^{\prime}_{21} \phi_{22} dx_{2} } \hfill \\ + \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi^{\prime}_{11} \phi^{\prime}_{12} dx_{1} } \int_{0}^{1} {\phi_{22} dx_{2} } - \frac{{L_{2}^{2} h_{b2} }}{{L_{1}^{2} h_{b1} }}\int_{0}^{1} {\phi_{22} dx_{2} } \int_{0}^{1} {\phi^{\prime\prime}_{11} \phi_{12} dx_{1} } \hfill \\ \end{gathered} }{{M_{2} }} $$
(67)
$$ \overline{s}_{22} = \frac{\begin{gathered} \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {(1 - x_{2} )\phi_{12} (1)\phi^{\prime\prime}_{22} \phi_{22} dx_{2} } - \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi_{12} (1)\phi^{\prime}_{22} \phi_{22} dx_{2} } \hfill \\ + \frac{{L_{1} }}{{L_{2} }}\int_{0}^{1} {\phi^{\prime}_{12} \phi^{\prime}_{12} dx_{1} } \int_{0}^{1} {\phi_{22} dx_{2} } - \frac{{L_{2}^{2} h_{b2} }}{{L_{1}^{2} h_{b1} }}\int_{0}^{1} {\phi_{22} dx_{2} } \int_{0}^{1} {\phi^{\prime\prime}_{12} \phi_{12} dx_{1} } \hfill \\ \end{gathered} }{{M_{2} }} $$
(68)
$$ \overline{f} = \frac{{\alpha V[\phi^{\prime}_{12} (x_{b} ) - \phi^{\prime}_{12} (x_{a} )]}}{{M_{2} }} $$
(69)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liu, H., Liu, C. et al. Modal coupled vibration behavior of piezoelectric L-shaped resonator induced by added mass. Nonlinear Dyn 109, 2297–2318 (2022). https://doi.org/10.1007/s11071-022-07606-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07606-0

Keywords

Navigation