Skip to main content
Log in

Perturbation-based prediction of vibration phase shift along fluid-conveying pipes due to Coriolis forces, nonuniformity, and nonlinearity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Flexural vibrations of a fluid-conveying pipe are investigated theoretically, with special consideration to the spatial shift in vibration phase caused by fluid flow and various imperfections. The latter includes small nonuniformity or asymmetry in stiffness, mass, or damping, and weak stiffness and damping nonlinearity. Besides contributing general understanding of wave propagation in elastic media with gyroscopic forces, this is relevant for the design, control, and troubleshooting of phase shift measuring devices like Coriolis mass flowmeters. A multiple time-scaling perturbation analysis is employed with a simple model of a fluid-conveying pipe with relevant imperfections, resulting in simple analytical expressions for the prediction of phase shift. For applications like Coriolis flowmetering, this allows for readily examining effects of a variety of relevant features, like small sensors and actuators, production inaccuracies, mounting conditions, wear, contamination, and corrosion. To second order of accuracy, only mass flow and asymmetrically distributed damping are predicted to introduce spatial phase shift, while nonuniformly distributed linear mass and stiffness, symmetrically distributed linear damping, and uniformly nonlinear stiffness and damping are all negligible in comparison. The analytical predictions are illustrated by examples and validated with excellent agreement against numerical analysis for realistic magnitudes of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thomsen, J.J., Dahl, J.: Analytical predictions for vibration phase shifts along fluid-conveying pipes due to Coriolis forces and imperfections. J. Sound Vib. 329, 3065–3081 (2010)

    Google Scholar 

  2. Benjamin, T.: Dynamics of a system of articulated pipes conveying fluid—I. Theory. Proc. R. Soc. A 261, 457–486 (1961)

    MathSciNet  MATH  Google Scholar 

  3. Benjamin, T.: Dynamics of a system of articulated pipes conveying fluid—II. Experiments. Proc. R. Soc. A 261, 487–499 (1961)

    MathSciNet  MATH  Google Scholar 

  4. Païdoussis, M.P., Issid, N.T.: Dynamic stability of pipes conveying fluid. J. Sound Vib. 33, 267–294 (1974)

    Google Scholar 

  5. Païdoussis, M.P.: Fluid Structure Interactions: Slender Structures and Axial Flow, vol. 1. Academic Press, London (1998)

    Google Scholar 

  6. Païdoussis, M.P.: The canonical problem of the fluid-conveying pipe and radiation of the knowledge gained to other dynamics problems across applied mechanics. J. Sound Vib. 310, 462–492 (2008)

    Google Scholar 

  7. Ibrahim, R.A.: Mechanics of pipes conveying fluids—part I: fundamental studies. J. Press. Vessel Technol. 132, 034001-1:32 (2010)

    Google Scholar 

  8. Ibrahim, R.A.: Mechanics of pipes conveying fluids—part II: applications and fluidelastic problems. J. Press. Vessel Technol. 133, 024001-1:30 (2011)

    Google Scholar 

  9. Anklin, M., Drahm, W., Rieder, A.: Coriolis mass flowmeters: overview of the current state of the art and latest research. Flow Meas. Instrum. 17, 317–323 (2006)

    Google Scholar 

  10. Ghayesh, M.H., Amabili, M., Païdoussis, M.P.: Thermo-mechanical phase-shift determination in Coriolis mass-flowmeters with added masses. J. Fluids Struct. 34, 1–13 (2012)

    Google Scholar 

  11. Wang, T., Baker, R.: Coriolis flowmeters: a review of developments over the past 20 years, and an assessment of the state of the art and likely future directions. Flow Meas. Instrum. 40, 99–123 (2014)

    Google Scholar 

  12. Raszillier, H., Durst, F.: Coriolis-effect in mass flow metering. Arch. Appl. Mech. 61, 192–214 (1991)

    MATH  Google Scholar 

  13. Lange, U., Levient, A., Pankratz, T., Raszillier, H.: Effect of detector masses on calibration of Coriolis flowmeters. Flow Meas. Instrum. 5, 255–262 (1994)

    Google Scholar 

  14. Sultan, G., Hemp, J.: Modelling of the Coriolis mass flowmeter. J. Sound Vib. 132, 473–489 (1989)

    Google Scholar 

  15. van de Ridder, L., Hakvoort, W., van Dijk, J., Lötters, J., de Boer, A.: Quantification of the influence of external vibrations on the measurement error of a Coriolis mass-flowmeter. Flow Meas. Instrum. 40, 39–49 (2014)

    Google Scholar 

  16. Cheesewright, R., Clark, C.: The effect of flow pulsations on Coriolis mass flow meters. J. Fluids Struct. 12, 1025–1039 (1998)

    Google Scholar 

  17. Belhadj, A., Cheesewright, R., Clark, C.: The simulation of Coriolis meter response to pulsating flow using a general purpose F.E. code. J. Fluids Struct. 14, 613–634 (2000)

    Google Scholar 

  18. Enz, S., Thomsen, J.J.: Predicting phase shift effects for vibrating fluid-conveying pipes due to Coriolis forces and fluid pulsation. J. Sound Vib. 330, 5096–5113 (2011)

    Google Scholar 

  19. Svete, A., Kutin, J., Bobovnik, G., Bajsic, I.: Theoretical and experimental investigations of flow pulsation effects in Coriolis mass flowmeters. J. Sound Vib. 352, 30–45 (2015)

    Google Scholar 

  20. Enz, S., Thomsen, J.J., Neumeyer, S.: Experimental investigation of zero phase shift effects for Coriolis flowmeters due to pipe imperfections. Flow Meas. Instrum. 22, 1–9 (2011)

    Google Scholar 

  21. Basse, N.T.: Coriolis flowmeter damping for two-phase flow due to decoupling. Flow Meas. Instrum. 26, 40–52 (2016)

    Google Scholar 

  22. Kutin, J., Bajsic, I.: Stability-boundary effect in Coriolis meters. Flow Meas. Instrum. 12, 65–73 (2001)

    Google Scholar 

  23. Kutin, J., Bajsic, I.: An analytical estimation of the Coriolis meter’s characteristics based on modal superposition. Flow Meas. Instrum. 12, 345–351 (2002)

    Google Scholar 

  24. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  25. Nayfeh, A.H.: Nonlinear Interactions. Wiley, New York (1997)

    Google Scholar 

  26. Thomsen, J.J.: Vibrations and Stability: Advanced Theory, Analysis, and Tools. Springer, Berlin (2003)

    MATH  Google Scholar 

  27. Dezhi, Z., Shuai, W., Shangchun, F.: Nonlinear vibration characteristics of Coriolis mass flowmeter. Chin. J. Aeronaut. 22, 198–205 (2009)

    Google Scholar 

  28. Ghazavi, M., Molki, H., Ali Beigloo, A.: Nonlinear vibration and stability analysis of the curved microtube conveying fluid as a model of the micro coriolis flowmeters based on strain gradient theory. Appl. Math. Model. 45, 1020–1030 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Enz, S.: Effect of asymmetric actuator and detector position on Coriolis flowmeter and measured phase shift. Flow Meas. Instrum. 21, 497–503 (2010)

    Google Scholar 

  30. Wang, T., Baker, R.C., Hussain, Y.: An advanced numerical model for single straight tube Coriolis flowmeters. J. Fluids Eng. 128, 1346–1350 (2006)

    Google Scholar 

  31. Wang, S., Clark, C., Cheesewright, R.: Virtual Coriolis flow meter: a tool for simulation and design. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 220, 817–835 (2006)

    Google Scholar 

  32. Mole, N., Bobovnik, G., Kutin, J., Stok, B., Bajsic, I.: An improved three-dimensional coupled fluid-structure model for Coriolis flowmeters. J. Fluids Struct. 24, 559–575 (2008)

    Google Scholar 

  33. Ruoff, J., Hodapp, M., Kück, H.: Finite element modelling of Coriolis mass flowmeters with arbitrary pipe geometry and unsteady flow conditions. Flow Meas. Instrum. 37, 119–126 (2014)

    Google Scholar 

  34. Bobovnik, G., Kutin, J., Mole, N., Štok, B., Bajsic, I.: Numerical analysis of installation effects in Coriolis flowmeters: single and twin tube configurations. Flow Meas. Instrum. 44, 71–78 (2015)

    Google Scholar 

  35. Binulal, B., Rajan, A., Kochupillai, J.: Dynamic analysis of Coriolis flowmeter using Timoshenko beam element. Flow Meas. Instrum. 47, 100–109 (2016)

    Google Scholar 

  36. Yaushev, A.A., Taranenko, P.A., Loginovskiy, V.A.: Analysis of influence of mechanical boundary conditions on zero point shift of Coriolis flowmeter. Proc. Eng. 206, 552–557 (2017)

    Google Scholar 

  37. Cheesewright, R., Clark, C., Belhadj, A., Hou, Y.Y.: The dynamic response of Coriolis mass flow meters. J. Fluids Struct. 18, 165–178 (2003)

    Google Scholar 

  38. Kutin, J., Bobovnik, G., Hemp, J., Bajsic, I.: Velocity profile effects in Coriolis mass flowmeters: recent findings and open questions. Flow Meas. Instrum. 17, 349–358 (2006)

    Google Scholar 

  39. Hemp, J., Kutin, J.: Theory of errors in Coriolis flowmeter readings due to compressibility of the fluid being metered. Flow Meas. Instrum. 17, 359–369 (2006)

    Google Scholar 

  40. Lautrup, B.: Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World. Institute of Physics, Bristol (2005)

    MATH  Google Scholar 

  41. Shabana, A.A.: Vibration of Discrete and Continuous Systems, 2nd edn. Springer, New York (1997)

    Google Scholar 

  42. Ziegler, H.: Principles of Structural Stability. Blaisdell, Waltham (1968)

    Google Scholar 

  43. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)

    MATH  Google Scholar 

  44. Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Springer, New York (1996)

    MATH  Google Scholar 

  45. Baker, R.C.: Flow Measurement Handbook. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  46. Raszillier, H., Alleborn, N., Durst, F.: Effect of a concentrated mass on coriolis flowmetering. Arch. Appl. Mech. 64, 373–382 (1994)

    MATH  Google Scholar 

  47. Ewins, D.J.: Modal Testing: Theory, Practice and Application, 2nd edn. Research Studies Press Ltd., Hertfordshire (2000)

    Google Scholar 

  48. Cunningham, T.J.: Zero shifts due to non-proportional damping. In: Proceedings of the 15th International Modal Analysis Conference, IMAC, Orlando, Florida, February 3–6, 1997, Vol. 1, pp. 237–243 (1997)

  49. Thomsen, J.J., Dahl, J., Fuglede, N., Enz, S.: Predicting phase shift of elastic waves in pipes due to fluid flow and imperfections. In: Pawelczyk, M.R., Bismor, D. (eds.) Proceedings of the 16th International Congress on Sound and Vibration (ICSV16), Kraków, Poland, July 5–9, 2009, p. 8 (2009)

  50. Mathews, J.H., Howell, R.W.: Complex Analysis for Mathematics and Engineering, 4th edn. Jones & Bartlett, Sudbury (2001)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Siemens Flow Instruments in Denmark for stimulating problems and discussions, technical assistance with experiments, and partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Juel Thomsen.

Ethics declarations

Conflict of interest

The second author received financial support for traveling and accommodation from Siemens Flow Instruments in Denmark.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomsen, J.J., Fuglede, N. Perturbation-based prediction of vibration phase shift along fluid-conveying pipes due to Coriolis forces, nonuniformity, and nonlinearity. Nonlinear Dyn 99, 173–199 (2020). https://doi.org/10.1007/s11071-019-04934-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04934-6

Keywords

Navigation