Skip to main content
Log in

Non-planar responses of cantilevered pipes conveying fluid with intermediate motion constraints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear responses of a loosely constrained cantilevered pipe conveying fluid in the context of three-dimensional (3-D) dynamics are investigated. The pipe is allowed to oscillate in two perpendicular principal planes, and hence its 3-D motions are possible. Two types of motion constraints are considered. One type of constraints is the tube support plate (TSP) which comprises a plate with drilled holes for the pipe to pass through. A second type of constraints consists of two parallel bars (TPBs). The restraining force between the pipe and motion constraints is modeled by a smoothened-trilinear spring. In the theoretical analysis, the 3-D version of nonlinear equations is discretized via Galerkin’s method, and the resulting set of equations is solved using a fourth-order Runge–Kutta integration algorithm. The dynamical behaviors of the pipe system for varying flow velocities are presented in the form of bifurcation diagrams, time traces, power spectra diagrams and phase plots. Results show that both types of motion constraints have a significant influence on the dynamic responses of the cantilevered pipe. Compared to previous work dealing with the loosely constrained pipe with motions restricted to a plane, both planar and non-planar oscillations are explored in this 3-D version of pipe system. With increasing flow velocity, it is shown that both periodic and quasi-periodic motions can occur in the system of a cantilever with TPBs constraints. For a cantilevered pipe with TSP constraints, periodic, chaotic, quasi-periodic and sticking behaviors are detected. Of particular interest of this work is that quasi-periodic motions may be induced in the pipe system with either TPBs or TSP constraints, which have not been observed in the 2-D version of the same system. The results obtained in this work highlight the importance of consideration of the non-planar oscillations in cantilevered pipes subjected to loose constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Paidoussis, M.P.: Pipes conveying fluid: a model dynamical problem. J. Fluid Struct. 7(2), 137–204 (1993)

    Article  Google Scholar 

  2. Ni, Q., Wang, Y., Tang, M., Luo, Y., Yan, H., Wang, L.: Nonlinear impacting oscillations of a fluid-conveying pipe subjected to distributed motion constraints. Nonlinear Dyn. 81(893–904), 14 (2015)

    Google Scholar 

  3. Modarres-Sadeghi, Y., Paidoussis, M.P., Semler, C.: Three-dimensional oscillations of a cantilever pipe conveying fluid. Int. J. Non-Linear Mech. 43(43), 18–25 (2008)

    Article  MATH  Google Scholar 

  4. Jayaraman, K., Narayanann, S.: Chaotic oscillations in pipes conveying pulsating fluid. Nonlinear Dyn. 10(4), 333–357 (1996)

    Article  Google Scholar 

  5. Wadham-Gagnon, M., Paidoussis, M.P., Semler, C.: Dynamics of cantilevered pipes conveying fluid. Part 1: nonlinear equations of three-dimensional motion. J. Fluids Struct. 23(4), 545–567 (2007)

    Article  Google Scholar 

  6. Hu, K., Wang, Y.K., Dai, H.L., Wang, L., Qian, Q.: Nonlinear and chaotic vibrations of cantilevered micropipes conveying fluid based on modified couple stress theory. Int. J. Eng. Sci. 105, 93–107 (2016)

    Article  MathSciNet  Google Scholar 

  7. Wang, L., Hong, Y.Z., Dai, H.L., Ni, Q.: Natural frequency and stability tuning of cantilevered CNTs conveying fluid in magnetic field. Acta Mech. Solida Sin. 29(6), 567–576 (2016)

    Article  Google Scholar 

  8. Paidoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow. Academic Press, London (1998)

    Google Scholar 

  9. Gregory, R.W., Paidoussis, M.P.: Unstable oscillations of tubular cantilevers conveying fluid—I. Theory. Proc. R. Soc. A 293(1435), 512–527 (1966)

    Article  MATH  Google Scholar 

  10. Bajaj, A.K., Sethna, P.R., Lundgren, T.S.: Hopf bifurcation phenomena in tubes carrying fluid. SIAM J. Appl. Math. 39(2), 213–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tang, D.M., Dowell, E.H.: Chaotic oscillations of a cantilevered pipe conveying fluid. J. Fluids Struct. 2(3), 263–283 (1988)

    Article  Google Scholar 

  12. Dai, H.L., Wang, L.: Dynamics and stability of magnetically actuated pipes conveying fluid. Int. J. Struct. Stab. Dyn. 16(06), 1550026 (2016)

    Article  Google Scholar 

  13. Sugiyama, Y., Tanaka, Y., Kishi, T., Kawagoe, H.: Effect of a spring support on the stability of pipes conveying fluid. J. Sound Vib. 100(2), 257–270 (1985)

    Article  Google Scholar 

  14. Païdoussis, M.P., Semler, C: Nonlinear dynamics of a fluid-conveying cantilevered pipe with an intermediate spring support. Journal of Fluids and Structures. 7(7), 269–298; addendum in 7, 565–566 (1993)

  15. Sugiyama, Y., Katayama, T., Akesson, B., Sallström, J.H.: Stability of cantilevered pipes conveying fluid and having intermediate spring support. In: Transactions 11th International Conference on Structural Mechanics in Reactor Technology (SMiRT). Tokyo, Paper J10/1 (1991)

  16. Païdoussis, M.P., Moon, F.C.: Nonlinear and chaotic fluidelastic vibrations of a flexible pipe conveying fluid. J. Fluids Struct. 2(6), 567–591 (1988)

    Article  Google Scholar 

  17. Païdoussis, M.P., Li, G.X., Rand, R.H.: Chaotic motions of a constrained pipe conveying fluid: comparison between simulation, analysis and experiment. J. Appl. Mech. 58(2), 559–565 (1991)

    Article  Google Scholar 

  18. Païdoussis, M.P., Li, G.X., Moon, F.C.: Chaotic oscillations of the autonomous system of a constrained pipe conveying fluid. J. Sound Vib. 135(1), 1–19 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Paidoussis, M.P., Semler, C.: Nonlinear and chaotic oscillations of a constrained cantilevered pipe conveying fluid: a full nonlinear analysis. Nonlinear Dyn. 4(6), 655–670 (1993)

    Article  Google Scholar 

  20. Makrides, G.A., Edelstein, W.S.: Some numerical studies of chaotic motions in tubes conveying fluid. J. Sound Vib. 152(152), 517–530 (1992)

    Article  MATH  Google Scholar 

  21. Jin, J.D.: Stability and chaotic motion of a restrained pipe conveying fluid. J. Sound Vib. 208(3), 427–439 (1997)

    Article  Google Scholar 

  22. Fredriksson, M.H., Borglund, D., Nordmark, A.B.: Experiments on the onset of impacting motion using a pipe conveying fluid. Nonlinear Dyn. 19(3), 261–271 (1999)

    Article  MATH  Google Scholar 

  23. Lim, J.-H., Jung, G.-C., Choi, Y.-S.: Nonlinear dynamic analysis of cantilever tube conveying fluid with system identification. KSME Int. J. 17(12), 1994–2003 (2003)

    Article  Google Scholar 

  24. Païdoussis, M.P.: Fluid Structure Interactions: Slender Structures and Axial Flow, 1st edn. Academic Press, London (1998)

    Google Scholar 

  25. Lundgren, T.S., Sethna, P.R., Bajaj, A.K.: Stability boundaries for flow induced motions of tubes with an inclined terminal nozzle. J. Sound Vib. 64(4), 553–571 (1979)

    Article  MATH  Google Scholar 

  26. Bajaj, A.K., Sethna, P.R.: Flow induced bifurcations to three-dimensional oscillatory motions in continuous tubes. SIAM J. Appl. Math. 44(2), 270–286 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Païdoussis, M.P., Semler, C., Wadham-Gagnon, M., Saaid, S.: Dynamics of cantilevered pipes conveying fluid. Part 2: dynamics of the system with intermediate spring support. J. Fluids Struct. 23(4), 569–587 (2007)

    Article  Google Scholar 

  28. Ghayesh, M.H., Paidoussis, M.P., Modarres-Sadeghi, Y.: Three-dimensional dynamics of a fluid-conveying cantilevered pipe fitted with an additional spring-support and an end-mass. J. Sound Vib. 330(12), 2869–2899 (2011)

    Article  Google Scholar 

  29. Ghayesh, M.H., Païdoussis, M.P.: Three-dimensional dynamics of a cantilevered pipe conveying fluid, additionally supported by an intermediate spring array. Int. J. Non-Linear Mech. 45(5), 507–524 (2010)

    Article  Google Scholar 

  30. Mureithi, N.W., Paidoussis, M.P., Price, S.J.: Intermittency transition to chaos in the response of a loosely supported cylinder in an array in cross-flow. Chaos, Solitons Fractal. 5(5), 847–867 (1995)

    Article  MATH  Google Scholar 

  31. Wadham-Gagnon, M., Païdoussis, M.P., Semler, C.: Dynamics of cantilevered pipes conveying fluid. Part 1: nonlinear equations of three-dimensional motion. J. Fluids Struct. 23(4), 545–567 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the National Natural Science Foundation of China (Nos. 11672115 and 11622216) to this work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Ni.

Appendices

Appendix A

The various integrals appearing in Eqs. (16) and (17) can be evaluated analytically or numerically. They are given here

  1. (i)

    the linear terms:

    $$\begin{aligned} m_{ij}= & {} \int _0^1 {\varphi _i \varphi _j d\xi } \end{aligned}$$
    (A.1)
    $$\begin{aligned} c_{ij}= & {} \alpha \int _0^1 {\varphi _i {\varphi }''''_j \;\;d\xi } +2u\sqrt{\beta }\int _0^1 {\varphi _i {\varphi }'_j d\xi } \end{aligned}$$
    (A.2)
    $$\begin{aligned} k_{ij}= & {} \int _0^1 {\varphi _i {\varphi }''''_j \;\;d\xi } +u^{2}\int _0^1 {\varphi _i {\varphi }''_j d\xi } \nonumber \\&-\,\gamma \int _0^1 {\left( {1-\xi } \right) \varphi _i {\varphi }''_j d\xi }\nonumber \\&+\,\gamma \int _0^1 {\varphi _i {\varphi }'_j d\xi } \end{aligned}$$
    (A.3)
  2. (ii)

    the nonlinear terms:

    $$\begin{aligned} A_{ijkl}= & {} u^{2}\int _0^1 {\varphi _i {\varphi }'_j {\varphi }'_k {\varphi }''_l d\xi }\nonumber \\&-\,\gamma \int _0^1 {\left( {1-\xi } \right) \varphi _i {\varphi }'_j {\varphi }'_k {\varphi }''_l d\xi } \nonumber \\&-\,\frac{1}{2}\gamma \int _0^1 {\varphi _i {\varphi }'_j {\varphi }'_k {\varphi }'_l d\xi } \nonumber \\&+\,3\int _0^1 {\varphi _i {\varphi }'_j {\varphi }''_k {\varphi }'''_l d\xi } +\int _0^1 {\varphi _i {\varphi }''_j {\varphi }''_k {\varphi }''_l d\xi } \nonumber \\&-\,u^{2}\int _0^1 {\varphi _i {\varphi }'_j \int _0^\xi {{\varphi }'_k {\varphi }'''_l \;d\xi } d\xi } \nonumber \\&+\,\gamma \int _0^1 {\varphi _i {\varphi }'_j \int _0^\xi {\left( {1-\xi } \right) {\varphi }'_k {\varphi }'''_l \;d\xi } d\xi } \nonumber \\&-\,\int _0^1 {\varphi _i {\varphi }'_j \int _0^\xi {{\varphi }''_k {\varphi }''''_l d\xi } d\xi } \nonumber \\&+\,u^{2}\int _0^1 {\varphi _i {\varphi }''_j \int _\xi ^1 {\int _0^\xi {{\varphi }'_k {\varphi }'''_l \;d\xi } d\xi } d\xi } \nonumber \\&-\,\gamma \int _0^1 {\varphi _i {\varphi }''_j \int _\xi ^1 {\int _0^\xi {\left( {1-\xi } \right) {\varphi }'_k {\varphi }'''_l \;d\xi } d\xi } d\xi } \nonumber \\&-\,\int _0^1 {\varphi _i {\varphi }''_j \int _\xi ^1 {\int _0^\xi {{\varphi }''_k {\varphi }''''_l d\xi } d\xi } d\xi } \nonumber \\&-\,u^{2}\int _0^1 {\varphi _i {\varphi }''_j \int _0^\xi {{\varphi }'_k {\varphi }''_l d\xi } d\xi } \nonumber \\&-\,\int _0^1 {\varphi _i {\varphi }''_j \int _0^\xi {{\varphi }''_k {\varphi }'''_l \;d\xi } d\xi } \nonumber \\&+\,\int _0^1 {\varphi _i {\varphi }''_j \int _0^\xi {{\varphi }'_k {\varphi }'_l d\xi } d\xi } \end{aligned}$$
    (A.4)
    $$\begin{aligned} B_{ijkl}= & {} 2u\sqrt{\beta }\int _0^1 {\varphi _i {\varphi }'_j {\varphi }'_k {\varphi }'_l d\xi } \nonumber \\&-\,2u\sqrt{\beta }\int _0^1 {\varphi _i {\varphi }'_j \int _0^\xi {{\varphi }'_k {\varphi }''_l d\xi } d\xi } \nonumber \\&+\,2u\sqrt{\beta }\int _0^1 {\varphi _i {\varphi }''_j \int _\xi ^1 {\int _0^\xi {{\varphi }'_k {\varphi }''_l d\xi } d\xi } d\xi } \nonumber \\&-\,2u\sqrt{\beta }\int _0^1 {\varphi _i {\varphi }''_j \int _\xi ^1 {{\varphi }'_k {\varphi }'_l d\xi } d\xi } \end{aligned}$$
    (A.5)
    $$\begin{aligned} C_{ijkl}= & {} \int _0^1 {\varphi _i {\varphi }'_j \int _0^\xi {{\varphi }'_k {\varphi }'_l d\xi } d\xi } \nonumber \\&+\,\int _0^1 {\varphi _i {\varphi }''_j \int _\xi ^1 {\int _0^\xi {{\varphi }'_k {\varphi }'_l d\xi } d\xi } d\xi } \end{aligned}$$
    (A.6)
    $$\begin{aligned} D_{ijkl}= & {} u^{2}\int _0^1 {\varphi _i {\varphi }'_j {\varphi }'_k {\varphi }''_l d\xi } \nonumber \\&-\,\frac{1}{2}\gamma \int _0^1 {\left( {1-\xi } \right) \varphi _i {\varphi }''_j {\varphi }'_k {\varphi }'_l d\xi } \nonumber \\&-\,\gamma \int _0^1 {\left( {1-\xi } \right) \varphi _i {\varphi }'_j {\varphi }'_k {\varphi }''_l d\xi } \nonumber \\&-\,\frac{1}{2}\gamma \int _0^1 {\varphi _i {\varphi }'_j {\varphi }'_k {\varphi }'_l d\xi } \nonumber \\&+\,3\int _0^1 {\varphi _i {\varphi }'_j {\varphi }''_k {\varphi }'''_l d\xi } +\int _0^1 {\varphi _i {\varphi }''_j {\varphi }''_k {\varphi }''_l d\xi } \nonumber \\&-\,u^{2}\int _0^1 {\varphi _i {\varphi }'_j \int _0^\xi {{\varphi }'_k {\varphi }'''_l \;d\xi } d\xi } \nonumber \\&+\,\gamma \int _0^1 {\varphi _i {\varphi }'_j \int _0^\xi {\left( {1-\xi } \right) {\varphi }'_k {\varphi }'''_l \;d\xi } d\xi } \nonumber \\&-\,\int _0^1 {\varphi _i {\varphi }'_j \int _0^\xi {{\varphi }''_k {\varphi }''''_l \;\;d\xi } d\xi } \nonumber \\&+\,u^{2}\int _0^1 {\varphi _i {\varphi }''_j \int _\xi ^1 {\int _0^\xi {{\varphi }'_k {\varphi }'''_l \;d\xi } d\xi } d\xi } \nonumber \\&-\,\gamma \int _0^1 {\varphi _i {\varphi }''_j \int _\xi ^1 {\int _0^\xi {\left( {1-\xi } \right) {\varphi }'_k {\varphi }'''_l \;d\xi } d\xi } d\xi } \nonumber \\&-\,\int _0^1 {\varphi _i {\varphi }''_j \int _\xi ^1 {\int _0^\xi {{\varphi }''_k {\varphi }''''_l \;\;d\xi } d\xi } d\xi } \nonumber \\&-\,u^{2}\int _0^1 {\varphi _i {\varphi }''_j \int _0^\xi {{\varphi }'_k {\varphi }''_l d\xi } d\xi } \nonumber \\&-\,\int _0^1 {\varphi _i {\varphi }''_j \int _0^\xi {{\varphi }''_k {\varphi }'''_l \;d\xi } d\xi } \nonumber \\&+\,\int _0^1 {\varphi _i {\varphi }''_j \int _0^\xi {{\varphi }'_k {\varphi }'_l d\xi } d\xi } \end{aligned}$$
    (A.7)
    Fig. 12
    figure 12

    Bifurcation diagrams for the tip displacements in the y direction of a pipe constrained by TSP constraints

    $$\begin{aligned} E_{ijkl}= & {} 2u\sqrt{\beta }\int _0^1 {\varphi _i {\varphi }'_j {\varphi }'_k {\varphi }'_l d\xi } \nonumber \\&-\,2u\sqrt{\beta }\int _0^1 {\varphi _i {\varphi }'_j \int _0^\xi {{\varphi }'_k {\varphi }''_l d\xi } d\xi } \nonumber \\&+\,2u\sqrt{\beta }\int _0^1 {\varphi _i {\varphi }''_j \int _\xi ^1 {\int _0^\xi {{\varphi }'_k {\varphi }''_l d\xi } d\xi } d\xi } \nonumber \\&-\,2u\sqrt{\beta }\int _0^1 {\varphi _i {\varphi }''_j \int _\xi ^1 {{\varphi }'_k {\varphi }'_l d\xi } d\xi } \end{aligned}$$
    (A.8)
    $$\begin{aligned} F_{ijkl}= & {} \int _0^1 {\varphi _i {\varphi }'_j \int _0^\xi {{\varphi }'_k {\varphi }'_l d\xi } d\xi } \nonumber \\&+\,\int _0^1 {\varphi _i {\varphi }''_j \int _\xi ^1 {\int _0^\xi {{\varphi }'_k {\varphi }'_l d\xi } d\xi } d\xi } \end{aligned}$$
    (A.9)
  3. (iii)

    the nonlinear impacting force terms:

    $$\begin{aligned} f_i^1 \left( {\mathbf{q},\mathbf{p}} \right)= & {} \int _0^1 {\varphi _i f_\eta \left( {\eta ,\zeta } \right) } d\xi \nonumber \\= & {} \int _0^1 {\varphi _i f_\eta \left( {\varvec{\upvarphi }\cdot \mathbf{q},\varvec{\upvarphi }\cdot \mathbf{p}} \right) } d\xi \end{aligned}$$
    (A.10)
    $$\begin{aligned} f_i^2 \left( {\mathbf{q},\mathbf{p}} \right)= & {} \int _0^1 {\varphi _i f_\zeta \left( {\eta ,\zeta } \right) } d\xi \nonumber \\= & {} \int _0^1 {\varphi _i f_\zeta \left( {\varvec{\upvarphi }\cdot \mathbf{q},\varvec{\upvarphi }\cdot \mathbf{p}} \right) } d\xi \end{aligned}$$
    (A.11)

Appendix B

Modarres-Sadeghi [3] have used a six-mode Galerkin approximation in their calculations for predicting the 3-D dynamics of a cantilevered pipe. The purpose of this appendix is to evaluate the convergence property of the utilization of \(N=6\). Three bifurcation diagrams for the tip displacement in the \(\eta \) direction of a pipe with TSP constraints are presented in Fig. 12, for three different choices of truncation number. As shown in Fig. 12, the difference among the results predicted using \(N=5, 6\hbox { and }7\) is not obvious. In this paper, therefore, \(N=6\) will be employed in all numerical calculations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, L., Ni, Q. et al. Non-planar responses of cantilevered pipes conveying fluid with intermediate motion constraints. Nonlinear Dyn 93, 505–524 (2018). https://doi.org/10.1007/s11071-018-4206-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4206-1

Keywords

Navigation