Skip to main content
Log in

The mechanism of bursting oscillations with different codimensional bifurcations and nonlinear structures

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The main purpose of this article is to demonstrate that bursting oscillations can be observed not only in the slow–fast autonomous dynamical systems with multiple scales associated with time domain, but also in the non-autonomous dynamical systems with periodic excitations when an order gap exists between the exciting frequency and the natural frequency, implying multiple scales in frequency domain. Furthermore, we try to investigate the influence of different codimensional bifurcations between the quiescent states (QS) and repetitive spiking states (SP) and the nonlinear structures with different equilibrium branches on the bursting oscillations. By introducing an inductor as well as a periodically changed electrical current source in a traditional Chua’s circuit and taking suitable parameter values, a modified four-dimensional periodically excited oscillator with multiple scales in frequency domain is established. Bursting oscillations for two cases with nonlinear terms up to third and fifth order with codimension-1 and codimension-2 bifurcations have been explored, respectively. It is found that more equilibrium states may exist when higher order nonlinear terms are introduced in the vector field, which may cause multiple quiescent states, and accordingly, multiple forms of repetitive spiking oscillations in one bursting attractor, leading to more complicated bursting phenomena. Furthermore, instead of jumping from one stable equilibrium branch to settle down to another stable equilibrium branch when codimension-1 bifurcations (fold bifurcations) exist between QSs and SPs, codimension-2 bifurcation (fold-Hopf bifurcation) may cause QS approximately located on one stable equilibrium branch to jump to repetitive spiking oscillations surrounding another stable equilibrium branch of the generalized autonomous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abobda, L.T., Woafo, P.: Subharmonic and bursting oscillations of a ferromagnetic mass fixed on a spring and subjected to an AC electromagnet. Commun. Nonlinear Sci. Numer. Simul. 17, 3082–3091 (2012)

    Article  MathSciNet  Google Scholar 

  2. Courbage, M., Maslennikov, O.V., Nekorkin, V.I.: Synchronization in time-discrete model of two electrically coupled spike-bursting neurons. Chaos Solitons Fractals 45, 645–659 (2012)

    Article  Google Scholar 

  3. Tsaneva-Atanasova, K., Osinga, H.M., Rieß, T., Sherman, A.: Full system bifurcation analysis of endocrine bursting models. J.Theor. Biol. 264, 1133–1146 (2010)

    Article  MathSciNet  Google Scholar 

  4. Shilnikov, A.: Complete dynamical analysis of a neuron model. Nonlinear Dyn. 68, 305–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Simo, H., Woafo, P.: Bursting oscillations in electromechanical systems. Mech. Res. Commun. 38, 537–541 (2011)

    Article  MATH  Google Scholar 

  6. Kingni, S.T., Keuninckx, L., Woafo, P., Sande, G., Danckaert, J.: Dissipative chaos, Shilnikov chaos and bursting oscillations in a three-dimensional autonomous system: theory and electronic implementation. Nonlinear Dyn. 73, 1111–1123 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Watts, M., Tabak, J., Zimliki, C., Sherman, A., Bertram, R.: Slow variable dominance and phase resetting in phantom bursting. J. Theor. Biol. 276, 218–228 (2011)

    Article  Google Scholar 

  8. Izhikevich, E.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Schaffer, W.M., Bronnikova, V.: Peroxidase-ROS interactions. Nonlinear Dyn. 68, 413–430 (2012)

    Article  Google Scholar 

  10. Shen, J.H., Zhou, Z.Y.: Fast–slow dynamics in first-order initial value problems with slowly varying parameters and application to a harvested logistic model. Commun. Nonlinear Sci. Numer. Simul. 19, 2624–2631 (2014)

    Article  MathSciNet  Google Scholar 

  11. Wang, X.Y., Wang, L., Wu, Y.J.: Novel results for a class of singular perturbed slow–fast system. Appl. Math. Comput. 225, 795–806 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Rush, M.E., Rinzel, J.: The potassium a-current, low firing rates and rebound excitation in Hodgkin–Huxley models. Bull. Math. Biol. 57, 899–929 (1995)

    Article  MATH  Google Scholar 

  13. Li, Y.X., Rinzel, J.: Equations for InsP3 receptor-mediated [Ca2+] Oscillations derived from a detailed kinetic model: a Hodgkin–Huxley like formalism. J. Theor. Biol. 166, 461–473 (1994)

    Article  Google Scholar 

  14. Izhikevich, E.M., Desai, N.S., Walcott, E.C., Hoppensteadt, F.C.: Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci. 26, 161–167 (2003)

    Article  Google Scholar 

  15. Kingni, S.T., Nana, B., Ngueuteu, G.S.M., Woafo, P., Danckaert, J.: Bursting oscillations in a 3D system with asymmetrically distributed equilibria: mechanism, electronic implementation and fractional derivation effect. Chaos Solitons Fractals 71, 29–40 (2015)

    Article  MathSciNet  Google Scholar 

  16. Medetov, B., Weiß, R.G., Zhanabaev, ZZh, Zaks, M.A.: Numerically induced bursting in a set of coupled neuronal oscillators. Comm. Nonlinear Sci. Numer. Simul. 20, 1090–1098 (2015)

    Article  MATH  Google Scholar 

  17. Yu, Y., Tang, H.J., Han, X.J., Bi, Q.S.: Bursting mechanism in a time-delayed oscillator with slowly varying external forcing. Commun. Nonlinear Sci. Numer. Simul. 19, 1175–1184 (2014)

    Article  MathSciNet  Google Scholar 

  18. Han, X.J., Jiang, B., Bi, Q.S.: Symmetric bursting of focus–focus type in the controlled Lorenz system with two time scales. Phys. Lett. A 373, 3643–3649 (2009)

    Article  MATH  Google Scholar 

  19. Bi, Q.S., Zhang, Z.D.: Bursting phenomena as well as the bifurcation mechanism in controlled Lorenz oscillator with two time scales. Phys. Lett. A 375, 1183–1190 (2011)

    Article  MATH  Google Scholar 

  20. Wierschem, K., Bertram, R.: Complex bursting in pancreatic islets: a potential glycolytic mechanism. J. Theor. Biol. 228, 513–521 (2004)

  21. Han, X.J., Bi, Q.S.: Bursting oscillations in Duffings equation with slowly changing external forcing. Commun. Nonlinear Sci. Numer. Simul. 16, 4146–4152 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zheng, S., Han, X.J., Bi, Q.S.: Bifurcations and fast-slow behaviors in a hyperchaotic dynamical system. Commun. Nonlinear Sci. Numer. Simul. 16, 1998–2005 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rasmussen, A., Wyller, J., Vik, J.O.: Relaxation oscillations in spruce–budworm interactions. Nonlinear Anal. Real World Appl. 12, 304–319 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Perc, M., Marhl, M.: Different types of bursting calcium oscillations in non-excitable cells. Chaos Solitons Fractals 18, 759–773 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, Z.D., Li, Y.Y., Bi, Q.S.: Routes to bursting in a periodically driven oscillator. Phys. Lett. A 377, 975–980 (2013)

    Article  MathSciNet  Google Scholar 

  26. Skeldon, A.C., Moroz, I.M.: On a codimension-three bifurcation arising in a simple dynamo model. Phys. D 117, 117–127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. DaCunha, J.J., Davis, J.M.: A unified Floquet theory for discrete, continuous, and hybrid periodic linear systems. J. Differ. Equ. 251, 2987–3027 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Munyon, C., Eakin, K.C., Sweet, J.A., Miller, J.P.: Decreased bursting and novel object-specific cell firing in the hippocampus after mild traumatic brain injury. Brain Res. 1582, 220–226 (2014)

    Article  Google Scholar 

  29. Masaud, K., Macnab, C.J.B.: Preventing bursting in adaptive control using an introspective neural network algorithm. Neurocomputing 136, 300–314 (2014)

    Article  Google Scholar 

  30. Barnett, W., O’Brien, G., Cymbalyuk, G.: Bistability of silence and seizure-like bursting. J. Neurosci. Methods 220, 179–189 (2013)

    Article  Google Scholar 

  31. Simo, H., Woafo, P.: Bursting oscillations in electromechanical systems. Mech. Res. Commun. 38, 537–541 (2011)

    Article  MATH  Google Scholar 

  32. Jothimurugan, R., Suresh, K., Ezhilarasu, P.M., Thamilmaran, K.: Improved realization of canonical Chua’s circuit with synthetic inductor using current feedback operational amplifiers. AEU Int. J. Electron. Commun. 68, 413–421 (2014)

    Article  Google Scholar 

  33. Zou, Y.L., Zhu, J.: Controlling the chaotic n-scroll Chuas circuit with two low pass filters. Chaos Solitons Fractals 29, 400–406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dai, H.H., Yue, X.K., Xie, D., Atluri, S.N.: Chaos and chaotic transients in an aeroelastic system. J. Sound Vib. 333, 7267–7285 (2014)

    Article  Google Scholar 

  35. Ghosh, D., Chowdhury, A.Y., Saha, P.: Bifurcation continuation, chaos and chaos control in nonlinear Bloch system. Commun. Nonlinear Sci. Numer. Simul. 13, 1461–1471 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinsheng Bi.

Additional information

The authors are supported by the National Natural Science Foundation of China (21276115, 11272135, 11472115, 11472116) and Qinlan Project of Jiangsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, Q., Li, S., Kurths, J. et al. The mechanism of bursting oscillations with different codimensional bifurcations and nonlinear structures. Nonlinear Dyn 85, 993–1005 (2016). https://doi.org/10.1007/s11071-016-2738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2738-9

Keywords

Navigation