Skip to main content
Log in

Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with uncertainties

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates a robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with the coupled position and attitude dynamics. Backstepping technique is applied as the main control structure. The uncertainties of the relative dynamics are compensated by using radial basis function neural networks (RBFNNs). An adaptive switching controller is designed by combining a conventional adaptive neural networks controller and an extra robust controller. The conventional RBFNNs dominate in the neural active region, while the robust controller retrieves the transient outside the active region. The controllers work together not only improving the control accuracy, but also reducing real-time computing burden of the controller. Lyapunov theory is employed to prove that the states are globally uniformly ultimately bounded. Simulation example is given to illustrate the effectiveness of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Singla, P., Subbarao, K., Junkins, J.L.: Output feedback based adaptive control for spacecraft rendezvous and docking under measurement uncertainties. J. Guid. Control Dyn. 29(4), 892–902 (2006)

    Article  Google Scholar 

  2. Subbarao, K., Welsh, S.: Nonlinear control of motion synchronization for satellite proximity operations. J. Guid. Control Dyn. 31(5), 1284–1294 (2008)

    Article  Google Scholar 

  3. Kristiansen, R., Grotli, E., Nicklasson, P.J., et al.: A model of relative translation and rotation in leader-follower spacecraft formations. Model. Identif. Control 28(1), 3–13 (2007)

    Article  Google Scholar 

  4. Kristiansen, R., Nicklasson, P.J., Gravdahl, J.T.: Spacecraft coordination control in 6DOF: integrator backstepping vs passivity-based control. Automatica 44(11), 2896–2901 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhang, F., Duan, G.R.: Integrated translational and rotational finite-time maneuver of a rigid spacecraft with actuator misalignment. IET Control Theory Appl. 6(9), 1192–1204 (2012)

    Article  MathSciNet  Google Scholar 

  6. Zhang, F., Duan, G., Hou, M.: Integrated relative position and attitude control of spacecraft in proximity operation missions with control saturation. Int. J. Innov. Comput. Inf. Control 8(5), 3537–3551 (2012)

    Google Scholar 

  7. Zhang, F., Duan, G.R.: Robust adaptive integrated translation and rotation control of a rigid spacecraft with control saturation and actuator misalignment. Acta Astronaut. 86, 167–187 (2013)

    Article  MathSciNet  Google Scholar 

  8. Shan, J.: Six-degree-of-freedom synchronised adaptive learning control for spacecraft formation flying. IET Control Theory Appl. 2(10), 930–949 (2008)

    Article  MathSciNet  Google Scholar 

  9. Xin, M., Pan, H.J.: Integrated nonlinear optimal control of spacecraft in proximity operations. Int. J. Control 83(2), 347–363 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Xin, M., Pan, H.J.: Indirect robust control of spacecraft via optimal control solution. IEEE Trans. Aerosp. Electron. Syst. 48(2), 1798–1809 (2012)

  11. Bae, J., Kim, Y.: Adaptive controller design for spacecraft formation flying using sliding mode controller and neural networks. J. Frankl. Inst. 349, 578–603 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sun, H., Li, S., Fei, S.: A composite control scheme for 6DOF spacecraft formation control. Acta Astronaut. 69, 595–611 (2011)

    Article  Google Scholar 

  13. Huang, J.T.: Global tracking control of strict-feedback systems using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 23(11), 1714–1725 (2012)

    Article  Google Scholar 

  14. Wu, J., Chen, W.S., Zhao, D., et al.: Globally stable direct adaptive backstepping NN control for uncertain nonlinear strict-feedback systems. Neurocomputing 122, 134–147 (2013)

    Article  Google Scholar 

  15. Zou, Y., Zheng, Z.: A robust RBFNN augmenting backstepping control approach for a model-scaled helicopter. IEEE Trans. Control Syst. Technol 23(6), 2344–2352 (2015)

  16. Polycarpou, M.M., Ioannou, P.A.: A robust adaptive nonlinear control design. Automatica 32(3), 423–427 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sidi, M.J.: Spacecraft Dynamics and Control: A Practical Engineering Approach. Cambridge University Press, New York (1997)

    Book  Google Scholar 

  18. Kristiansen, R., Nicklasson, P.J.: Spacecraft formation flying: a review and new results on state feedback control. Acta Astronaut. 65(11), 1537–1552 (2009)

    Article  Google Scholar 

  19. Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems. AIAA Education Series, AIAA, Reston (2003)

    Book  MATH  Google Scholar 

  20. Leeghim, H., Seo, I., Bang, H.: Adaptive nonlinear control using input normalized neural networks. J. Mech. Sci. Technol. 22(6), 1073–1083 (2008)

    Article  Google Scholar 

  21. Sola, J., Sevilla, J.: Importance of data normalization for the application of neural networks to complex industrial problems. IEEE Trans. Nucl. Sci. 44(3), 1464–1468 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Nos. 61134005, 61327807), and National Key Development Program for Basic Research of China (No. 2012CB821204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, K., Huo, W. Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with uncertainties. Nonlinear Dyn 84, 1683–1695 (2016). https://doi.org/10.1007/s11071-016-2597-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2597-4

Keywords

Navigation