Skip to main content
Log in

Inverse dynamics of the HALF parallel manipulator with revolute actuators

  • Original Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Recursive matrix relations for kinematics and dynamics of the HALF parallel manipulator are presented in this paper. The prototype of this robot is a spatial mechanism with revolute actuators, which has two translation degrees of freedom and one rotation degree of freedom. The parallel manipulator consists of a base plate, a movable platform and a system of three connecting legs, having wide application in the fields of industrial robots, simulators, parallel machine tools and any other manipulating devices where high mobility is required. Supposing that the position and the motion of the moving platform are known, an inverse dynamics problem is solved using the principle of virtual powers. Finally, some iterative matrix relations and graphs of the torques and powers for all actuators are analysed and determined. It is shown that this approach is an effective means for kinematics and dynamics modelling of parallel mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a k,k−1 :

& orthogonal transformation matrix

a=Q T :

General transformation matrix of moving platform

⇁ u1 ,⇁ u2 ,⇁ u3 :

three orthogonal unit vectors

α:

angle of initial inclination of upper arm of three legs

ϕ k,k−1 :

relative rotation angle of T k rigid body

⇁ ω k,k - 1 :

relative angular velocity of T k

⇁ ω k0 :

absolute angular velocity of T k

k,k - 1 :

skew-symmetric matrix associated to the angular velocity ⇁ ω k,k - 1

⇁ ε k,k - 1 :

relative angular acceleration of T k

⇁ ε k0 :

absolute angular acceleration of T k

k,k - 1 :

skew-symmetric matrix associated to the angular acceleration ⇁ ε k,k - 1 $

⇁ rk,k - 1 A :

relative position vector of the centre of A k joint

⇁ vk,k - 1 A :

relative velocity of the centre A k

⇁ γ k,k - 1 A :

relative acceleration of the centre A k

m k :

mass of T k rigid body

Ĵk :

symmetric matrix of tensor of inertia of T k about the link-frame A kxkykzk

J 1, J 2 :

two Jacobian matrices of the manipulator

m A 10, m B 10, m C 10 :

torques of three actuators pointing about the A 1 z A 1, B 1 z B 1, C 1 z C 1 directions

References

  1. Reboulet, C., Pigeyre, R.: Hybrid control of a 6-DOF in-parallel actuated micro-manipulator mounted on a Scara robot. In: Proceedings of the International Symposium on Robotics and Manufacturing: Research, Education and Applications, pp. 293–298, Burnaby, Canada (1990)

  2. Valenti, M.: Machine tools get smarter. ASME Mech. Eng. 17, 70–75 (1995)

    Google Scholar 

  3. Cleary, K., Brooks, T.: Kinematics analysis of a novel 6-DOF parallel manipulator. In: Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, Georgia, USA, pp. 708–713, TX (1993)

  4. Hudgens, J., Tesar, D.: A fully-parallel six degree-of-freedom micromanipulator: kinematics analysis and dynamic model. In: Proceedings of the 20th Biennial ASME Mechanisms Conference, Kissimmee, Orlando, FL, Vol. 15(3), pp. 29–38 (1988)

  5. Romiti, A., Sorli, M.: A parallel 6-DOF manipulator for cooperative work between robots in deburring. In: Proceedings of the 23rd International Symposium on Industrial Robots, pp. 437–442, Barcelona, Spain (1992)

  6. Zhang, D.: Kinetostatic Analysis and Optimization of Parallel and Hybrid Architectures for Machine Tools. Ph.D. Thesis, Laval University, Canada (2000)

  7. Oh, K.-K., Liu, X.-J., Kang, D.S., Kim, J.: Optimal design of a micro parallel positioning platform. Part II: Real Machine Design. Robotica 23, 109–122 (2005)

    Google Scholar 

  8. Husty, M.L.: An algorithm for solving the direct kinematics of the Stewart–Gough platforms. Mech. Mach. Theory 31, 365–379 (1996)

    Article  Google Scholar 

  9. Parenti-Castelli, V., Di Gregorio, R.: A new algorithm based on two extra-sensors for real-time computation of the actual configuration of generalized Stewart–Gough manipulator. J. Mech. Des. 122, 294–298 (2000)

    Article  Google Scholar 

  10. Stewart, D.: A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 180, 371–386 (1965)

    Google Scholar 

  11. Wohlhart, K.: Displacement analysis of the general spherical Stewart platform. Mech. Mach. Theory 29, 581–589 (1994)

    Article  Google Scholar 

  12. Hervé, J.M.: Group mathematics and parallel link mechanisms. In: Proceedings of IMACS/SICE International Symposium on Robotics, Mechatronics, and Manufacturing Systems, pp. 459–464, Kobe, Japan (1992)

  13. Clavel, R.: DELTA: a fast robot with parallel geometry. In: Proceedings of the 18th International Symposium on Industrial Robot, pp. 91–100, Sydney, Australia, April (1988)

  14. Staicu, S., Carp-Ciocardia, D.C.: Dynamic analysis of Clavel’s Delta parallel robot. In: Proceedings of the IEEE International Conference on Robotics & Automation, pp. 4116–4121, Taipei, Taiwan (2003).

  15. Tsai, L-W. (ed.): Robot Analysis: The Mechanics of Serial and Parallel Manipulator. Wiley, New York (1999)

  16. Tsai, L.W., Stamper, R.: A parallel manipulator with only translational degrees of freedom. In: Proceedings of the ASME 96-DETC-MECH-1152, Irvine, CA (1996)

  17. Li, Y.-W., Wang, J., Wang, L.-P., Liu, X.-J.: Inverse dynamics and simulation of a 3-DOF spatial parallel manipulator. In: Proceedings of the IEEE International Conference on Robotics & Automation, pp. 4092–4097, Taipei, Taiwan (2003)

  18. Zaganech, R., Sinatra, R., Angeles, J.: Kinematics and dynamics of a six-degrees-of-freedom parallel manipulator with revolute legs. Robotica 15, 385–394 (1997)

    Article  Google Scholar 

  19. Kane, T.R., Levinson, D.A. (eds.): Dynamics: Theory and Applications, McGraw-Hill, New York (1985)

  20. Sorli, M., Ferarresi, C., Kolarski, M., Borovac, B., Vucobratovic, M.: Mechanics of Turin parallel robot. Mech. Mach. Theory 32, 51–77 (1997)

    Article  MATH  Google Scholar 

  21. Geng, Z., Haynes, L.S., Lee, J.D., Carroll, R.L.: On the dynamic model and kinematics analysis of a class of Stewart platforms. Robot. Auton. Syst. 9, 237–254 (1992)

    Article  Google Scholar 

  22. Dasgupta, B., Mruthyunjaya, T.S.: A Newton–Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mech. Mach. Theory 34, 711–725 (1998)

    Article  Google Scholar 

  23. Wang, J., Liu, X.-J.: Analysis of a novel cylindrical 3-DoF parallel robot. Robot. Auton. Syst. 42, 31–46 (2003)

    Article  MATH  Google Scholar 

  24. Liu, X.-J., Tang, X., Wang, J.: HANA: a novel spatial parallel manipulator with one rotational and two translational degrees of freedom. Robotica 23(2), 257–270 (2005)

    Article  Google Scholar 

  25. Merlet, J.-P. (ed.): Parallel Robots. Kluwer, Norwell, MA (2000)

  26. Angeles, J. (ed.): Fundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms. Springer-Verlag, Berlin (2002)

  27. Staicu, S. (ed.): Mecanica Teoretica. Didactica & Pedagogica Publishing House, Bucharest, Romania (1998)

  28. Staicu, S., Zhang, D., Rugescu, R.: Dynamic modelling of a 3-DOF parallel manipulator using recursive matrix relations. Robotica 24(1), 125–130 (2006)

    Article  Google Scholar 

  29. Staicu, S.: Planetary gear train for robotics. In: Proceedings of the IEEE International Conference on Mechatronics ICM’2005, Taipei, Taiwan, pp. 840–845 (2005)

  30. Liu, X.-J., Wang, J., Gao, F., Wang, L.-P.: On the analysis of a new spatial three degrees of freedom parallel manipulator. IEEE Trans. Robot. Autom. 17(6), 959–968 (2001)

    Article  Google Scholar 

  31. Gosselin, C.M., Angeles, J.: Singularity analysis of closed loop kinematics chains. IEEE Trans. Robot. Autom. 6(3), 281–290 (1990)

    Article  Google Scholar 

  32. Guegan, S., Khalil, W., Chablat, D., Wenger, P.: Modélisation dynamique d’un robot parallèle à 3-DDL: l’Orthoglide. In: Conférence Internationale Francophone d’Automatique, 8–10 Juillet, Nantes, France (2002)

  33. Zhang, C.-D., Song, S.-M.: An efficient method for inverse dynamics of manipulators based on virtual work principle. J. Robot. Syst. 19(5), (1999)

  34. Staicu, S.: Méthodes matricielles en dynamique des mécanismes. In: Scientific Bulletin, Series D, Mechanical Engineering, Vol. 62(3). University “Politehnica” of Bucharest, Romania (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Jun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staicu, S., Liu, XJ. & Wang, J. Inverse dynamics of the HALF parallel manipulator with revolute actuators. Nonlinear Dyn 50, 1–12 (2007). https://doi.org/10.1007/s11071-006-9138-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-9138-5

Keywords

Navigation