Skip to main content

Advertisement

Log in

Analysis of topographic parameters underpinning landslide occurrence in Kigezi highlands of southwestern Uganda

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

An assessment of the influence of topography on landslide occurrence in the Kigezi highlands of southwestern Uganda was conducted. Whereas the frequency and magnitude of landslides in these highlands are on the increase, the topographic attributes underpinning landslide occurrence are not well understood. Sixty-five landslide scars were surveyed and mapped to produce landslide distribution maps. Specific topographic parameters, namely slope gradient, profile curvature, topographic wetness index (TWI), stream power index (SPI), and topographic position index (TPI), were assessed on landslide slope sites. The attributes were parameterized in the field and GIS environment using a 10-m DEM. Landslides were noted to concentrate along narrow topographic hollows, as opposed to broad concave slopes in the landscape. The occurrence is dominant in slope zones where slope gradient, profile curvature, TWI, TPI, and SPI are 25°–35°, 0.1–5, 8–18, − 1–1, and > 10, respectively. It was established that profile curvature and slope gradient are the most and least significant topographic parameters in landslide occurrence (R2 = 0.802, p value = 0.088 and R2 = 0.5665, p value = 0.057), respectively. An understanding of these topographic underpinnings would serve to identify and predict potential landslide zones within the landscape and enhance landslide hazard mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali G, Birkel C, Tetzlaff D, Soulsby C, Mcdonnell JJ, Tarolli P (2014) a comparison of wetness indices for the prediction of observed connected saturated areas under contrasting conditions. Earth Surf Process Landf 39(3):399–413. https://doi.org/10.1002/espe.3506

    Article  Google Scholar 

  • Bagoora FDK (1988) Soil erosion, mass wasting risk in the highland areas of Uganda. Mt Res Dev 8:173–182

    Article  Google Scholar 

  • Bagoora FDK (1989) A preliminary investigation into the consequences of inadequate conservation policies on steep slopes of the Rukiga highlands, South Western Uganda. In: Thomas DB, Biamah EK, Kilewe AM (eds) Soil conservation in Kenya. Dept Agri Er, Univ Nairobi, Kenya

    Google Scholar 

  • Bagoora FDK (1993) An assessment of some causes and effects of soil erosion hazard in Kabale Highland, South Western Uganda, and peoples attitude towards conservation. In: Abdellatif B (ed) Resource use and conservation: Faculty of Social Sciences, Mountain Research and Development, vol 8. Mohammed V. University, Rabat

    Google Scholar 

  • Broothaerts N, Kissi E, Poesen J, Van Rompaey A, Getahun K, Van Ranst E, Diels J (2012) Spatial patterns, causes and consequences of landslides in the Gilgel Gibe catchment, SW Ethiopia. CATENA 97:127–136. https://doi.org/10.1016/j.catena.2012.05.011

    Article  Google Scholar 

  • Buda AR (2013) Surface-runoff generation and forms of overland flow. Treatise Geomorphol 7:73–84. https://doi.org/10.1016/B978-0-12-374739-6.00151-2

    Article  Google Scholar 

  • Capitani M, Ribolini A, Bini M (2013) The slope aspect: a predisposing factor for landsliding. Comptes Rendus Geoscience 345(11–12):427–438. https://doi.org/10.1016/j.crte.2013.11.002

    Article  Google Scholar 

  • Carson B (1985) Erosion and sedimentation processes in the Nepalese Himalaya, occasional paper no. l. ICIMOD, Kathmandu

  • Chi BL, Bing CS, WalleyF Yates T (2009) Topographic indices and yield variability in a rolling landscape of western Canada. Pedosphere 19(3):362–370. https://doi.org/10.1016/S1002-0160(09)60127-2

    Article  Google Scholar 

  • Claessens L, Knapen A, Kitutu MG, Poesen J, Deckers JA (2007) Modelling landslide hazard, soil redistribution and sediment yield of landslides on the Ugandan footslopes of Mount Elgon. Geomorphology 90(1–2):23–35. https://doi.org/10.1016/j.geomorph.2007.01.007

    Article  Google Scholar 

  • Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Böhner J (2015) System for automated geoscientific analyses (SAGA) v.2.1.4. Geosci Model Dev 27(8):1991–2007

    Article  Google Scholar 

  • Corominas J (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73(2):209–263

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, natural resources council. Transportation Research Board Spec Rept, vol 247. National Research Council, Washington, DC, pp 36–75

    Google Scholar 

  • Ferreira CSS, Walsh RPD, Steenhuis TS, Shakesby RA, Nunes JPN, Coelho COA, Ferreira AJD (2015) Spatiotemporal variability of hydrologic soil properties and the implications for overland flow and land management in a peri-urban Mediterranean catchment. J Hydrol 525:249–263. https://doi.org/10.1016/j.jhydrol.2015.03.039

    Article  Google Scholar 

  • Gao J, Maro J (2010) Topographic controls on evolution of shallow landslides in pastoral Wairarapa, New Zealand, 1979–2003. Geomorphology 114(3):373–381. https://doi.org/10.1016/j.geomorph.2009.08.002

    Article  Google Scholar 

  • Grabs T, Seibert J, Bishop K, Laudon H (2009) Modelling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model. J Hydrol 373(1–2):15–23. https://doi.org/10.1016/j.jhydrol.2009.03.031

    Article  Google Scholar 

  • Gu Y, Wylie BK (2016) Using satellite vegetation and compound topographic indices to map highly erodible cropland buffers for cellulosic biofuel crop developments in eastern Nebraska, USA. Ecol Ind 60:64–70. https://doi.org/10.1016/j.ecolind.2015.06.019

    Article  Google Scholar 

  • Hosseini SA, Reza L, Majid L, Ataollah K, Aidin Parsakhoo A (2011) The effect of terrain factors on landslide features along forest road. Afr J Biotechnol 10(64):14108–14115

    Article  Google Scholar 

  • Hungr O, Fell R, Couture R, Eberhardt E (2005) Landslide risk management. Taylor and Francis, London, p 763

    Book  Google Scholar 

  • Infascelli R, Faugno S, Pindozzi S, Boccia L, Merot P (2013) Testing different topographic indexes to predict wetlands distribution. Procedia Environ Sci 19:733–746. https://doi.org/10.1016/j.proenv.2013.06.082

    Article  Google Scholar 

  • Kirschbaum DB, Zhou Y (2015) Spatial and temporal analysis of a global landslide catalog. J Geomorphol. https://doi.org/10.1016/2015.03.016

    Article  Google Scholar 

  • Kirschbaum DB, Stanley T, Zhou T (2015) Spatial and temporal analysis of a global landslide catalog. J Geomorphol 249(Geohazard Databases: Concepts, Development, Applications):4–15. https://doi.org/10.1016/j.geomorph.2015.03.016

    Article  Google Scholar 

  • Kirschbaum DB, Stanley T, Yatheendradas S (2016) Modelling landslide susceptibility over large regions with fuzzy overlay. Landslides 13:485–496. https://doi.org/10.1007/s10346-015-0577-2

    Article  Google Scholar 

  • Kitutu MG, Muwanga A, Posen J, Deckers JA (2004) The relationship between geology and landslides in Manjiya County, south west of Mount Elgon, Eastern Uganda. In: Geoscience Africa 2004 conference. Abstract volume 1. University of Witwatersrand, Johannesburg, pp 349–350

  • Kitutu MG, Muwanga A, Poesen J, Deckers JA (2009) Influence of soil properties on landslide occurrence in Bududa District, Eastern Uganda. Afr J Agric Res 4(7):611–620

    Google Scholar 

  • Kitutu MG, Poesen JM, Deckers J (2011) Farmer’s perception on landslide occurrences in Bududa District, Eastern Uganda. Afr J Agric Res 6:7–18

    Google Scholar 

  • Knapen A, Kitutu MG, Poesen J, Breugelmans W, Deckers J, Muwanga A (2006) Landslides in a densely populated county at the footsteps of Mount Elgon (Uganda): characteristics and causal factors. Geomorphology 73:149–165

    Article  Google Scholar 

  • Liang WL, Uchida T (2014) Effects of topography and soil depth on saturated-zone dynamics in steep hillslopes explored using the three-dimensional Richards’ equation. J Hydrol 510:124–136. https://doi.org/10.1016/j.jhydrol.2013.12.029

    Article  Google Scholar 

  • Liesbet J, Olivier D, Jean P, Damien D, Wim T, Matthieu K (2015) The Rwenzori Mountains, a landslide prone region. J Int Consort Landslides. https://doi.org/10.1007/s10346-015-0582-5

    Article  Google Scholar 

  • Loos M, Elsenbeer H (2011) Topographic controls on overland flow generation in a forest—an ensemble tree approach. J Hydrol 409(1–2):94–103. https://doi.org/10.1016/j.jhydrol.2011.08.002

    Article  Google Scholar 

  • López-Davalillo B, Monod MI, Alvarez-Fernandez G, Herrera-Garcia J, Darrozes C, Gonzalez-Nicieza Olivier M (2014) Morphology and causes of landslides in Portalet area (Spanish Pyrenees): probabilistic analysis by means of numerical modelling. Eng Fail Anal 36:390–406

    Article  Google Scholar 

  • Mertens K, Jacobs L, Maes J, Kabaseke C, Maertens M, Poesen J, Vranken L (2015) The impact of landslides on household income in tropical regions: a case study from the Rwenzori Mountains in Uganda (No. 1067-2016-86792)

  • Mokarram M, Roshan G, Negahban S (2015) Landform classification using topographic position index (case study: salt dome of Korsia-Darab plain, Iran). Model Earth Syst Environ 1(4):40. https://doi.org/10.1007/s40808-015-0055-9

    Article  Google Scholar 

  • Mugagga F, Kakembo V, Buyinza M (2011) A characterisation of the physical properties of soil and the implications for landslide occurrence on the slopes of Mount Elgon, Eastern Uganda. J Int Soc Prevent Mitig Nat Hazards. ISSN 0921-030X. https://doi.org/10.1007/s11069-011-9896-3

  • Mugagga F, Kakembo V, Buyinza M (2012) Land use changes on the slopes of Mount Elgon and the implications for the occurrence of landslides. CATENA 90:39–46. https://doi.org/10.1016/j.catena.2011.11.004

    Article  Google Scholar 

  • Muwanga A, Schuman A, Biryabarema M (2001) Landslides in Uganda—documentation of a natural hazard. Nat Hazards 136:111–115

    Google Scholar 

  • Nath SK, Thingbaijam KKS, Adhikari MD, Nayak A, Devaraj N, Ghosh SK, Mahajan AK (2013) Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes. Soil Dyn Earthq Eng 55:233–246. https://doi.org/10.1016/j.soildyn.2013.09.005

    Article  Google Scholar 

  • NEMA (2008) National State of environment report for Uganda for 2007/08. National Environment Management Authority, Kampala, Uganda. http://www.nemaug.org

  • NEMA (2010) National State of environment report for Uganda for 2009/2010. National Environment Management Authority, Kampala

    Google Scholar 

  • NEMA (2012) National State of environment report for Uganda for 2011/12. National Environment Management Authority, Kampala

    Google Scholar 

  • NEMA (2014) National State of environment report for Uganda for 2013/14. National Environment Management Authority, Kampala

    Google Scholar 

  • NEMA (2016) National State of environment report for Uganda for 2015/16. National Environment Management Authority, Kampala

    Google Scholar 

  • NEMA (2017) National State of environment report for Uganda for 2016/17. National Environment Management Authority, Kampala

    Google Scholar 

  • Ollier CD (1969) Terrain classification and data storage, Uganda land system. MEXE report no: 959. University of Oxford Press, Oxford

  • Quinn P, Beven KJ, Lamb R (1995) The ln(a/tanß) index: how to calculate it and how to use it within the TOPMODEL framework. Hydrol Process 9:161–182

    Article  Google Scholar 

  • Raju BCK, Nandagiri L (2015) Identification of hydrologically active areas in a watershed using satellite data. Aquatic Procedia 4(1):1339–1344. https://doi.org/10.1016/j.aqpro.2015.02.174

    Article  Google Scholar 

  • Seif A (2014) Using topography position index for landform classification (case study: grain mountain). Bull Environ Pharmacol Life Sci 3(11):33–39

    Google Scholar 

  • Seif A, Mokarram M (2014) GIS-based automated landform classification in Zagros mountain (case study: grain mountain). Bull Environ Pharmacol Life Sci 3(3):20–33

    Google Scholar 

  • Selby MG (1993) Hillslope materials and processes. Oxford University Press, New York

    Google Scholar 

  • Susana A, Elizabeth AH, Francesca P, Thorsten W (2017) Dealing with deep uncertainties in landslide modelling for disaster risk reduction under climate change. J Nat Hazards Earth Syst Sci 17:225–241

    Article  Google Scholar 

  • Tagil S, Jenness J (2008) GIS-based automated landform classification and topographic, land cover and geologic attributes of landforms around the Yazoren Polje, Turkey. J Appl Sci 8(6):910–921. https://doi.org/10.3923/jas.2008.910.921

    Article  Google Scholar 

  • UBOS (2017) Statistical abstracts 2017. Ministry of Finance, Planning and Economic Development, Uganda. http://www.ubos.org

Download references

Acknowledgements

The authors gratefully acknowledge the research grant from the Department of Research Capacity Development (RCD) of the Nelson Mandela University, Port Elizabeth and Makerere University—Swedish International Development Cooperation Agency (SIDA) Phase IV (2015/2020 Agreement)—Building Resilient Ecosystems and livelihoods to Climate Change and Disaster Risk (BREAD) project 331 research component, which funded travel and fieldwork for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Nseka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Landslide scar geometric characteristics

Appendix: Landslide scar geometric characteristics

Landslide scars

Landslide scar dimensions (m)

Area of the landslide scar (m2)

Volume of the scar (m3)

Gradient (°) range at slide failure zone

Average width (m)

Average depth (m)

Length (m)

1

3.7

1.7

402

1487

2462

25–28

2

9.66

2.3

463.5

4477

6064

30–32

3

17.5

0.74

350

6125

4427

30–34

4

2.1

1.2

602

1264

3773

26–27

5

8.5

2.245

14.1

120

258

30–33

6

10

5

600

6000

30,000

33–35

7

10

5

400

4000

20,000

32–34

8

10

5.3

498

4980

26,394

31–33

9

16.6

4.3

315

5229

22,600

33–35

10

10

0.5

12.5

125

63

23–25

11

5.6

0.85

525.1

2941

1676

42–45

12

5.8

2.3

530

3074

10,508

39–42

13

2.7

1.8

885

2390

3669

33–36

14

3.14

1.52

786

2468

4341

30–33

15

2.95

1.6

784

2313

4518

34–37

16

6.2

2.8

835

5177

14,496

35–37

17

4.33

2.8

752

3256

9413

29–32

18

5

2.5

600

3000

7500

33–35

19

2.5

2.5

653

1633

4081

34–37

20

1.7

1.9

268

456

866

29–31

21

1.2

1.4

198

238

333

24–27

22

0.9

2.1

213

192

403

30–33

23

2.4

2

201

482

965

28–30

24

1.7

1.4

341

580

812

17–19

25

2.3

1.9

189

435

826

20–23

26

2.8

1.7

244

683

1161

26–29

27

1.9

1.2

196

372

447

31–34

28

2.4

1.5

204

490

734

15–18

29

2.8

1.9

302

846

1607

19–22

30

1.9

1.6

194

369

590

29–32

31

2.1

2

219

460

920

26–29

32

1.3

1.8

142

185

332

24–26

33

2.7

2.2

408

1102

2424

29–31

34

2.5

2

386

965

1930

34–37

35

1.6

0.9

125

200

180

26–29

36

1.7

2.1

184

313

657

20–23

37

2.4

2.2

296

710

1563

23–26

38

1.8

1.2

202

364

436

28–31

39

1.4

1.7

182

255

433

30–34

40

2.7

2.2

501

1353

2976

25–28

41

2.1

1.7

234

491

835

18–21

42

1.5

1.8

267

401

721

28–32

43

2.2

2.2

58

128

281

25–27

44

1.9

2.7

135

257

693

22–25

45

2.8

1.2

196

549

659

30–33

46

2.3

1.9

243

559

1062

28–31

47

4.2

0.9

55

231

208

26–30

48

2.9

1.1

129

374

412

33–35

49

3.2

0.7

231

739

517

29–32

50

3.1

0.8

89

276

221

20–22

51

2.8

2.1

197

552

1158

18–21

52

3.4

1.7

238

809

1376

17–19

53

3.2

1.2

345

1104

1325

32–34

54

2.8

0.8

118

330

264

16–18

55

1.8

1.1

102

184

202

18–20

56

3.6

2.8

189

680

1905

29–32

57

3.9

3.1

213

831

2575

25–28

58

3.2

2.7

96

307

829

27–29

59

1.8

1.2

47

85

102

22–25

60

1.2

0.8

66

79

63

20–22

61

5.9

2.1

138

814

1710

26–29

62

3.6

1.9

123

443

841

32–34

63

6.2

3.2

84

521

1667

29–32

64

7

1.7

73

511

869

23–25

65

4.2

1.3

144

605

786

27–30

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nseka, D., Kakembo, V., Bamutaze, Y. et al. Analysis of topographic parameters underpinning landslide occurrence in Kigezi highlands of southwestern Uganda. Nat Hazards 99, 973–989 (2019). https://doi.org/10.1007/s11069-019-03787-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-019-03787-x

Keywords

Navigation