Skip to main content

Advertisement

Log in

Nonstationary joint probability analysis of extreme marine variables to assess design water levels at the shoreline in a changing climate

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In the present study, a recently developed novel approach (Bender et al. in J Hydrol 514:123–130, 2014) has been further extended to investigate the changes in the joint probabilities of extreme offshore and nearshore marine variables with time and to assess design the total water level (TWL) at the shoreline under the effects of climate change. The nonstationary generalised extreme value (GEV) distribution has been utilised to model the marginal distribution functions of marine variables (wave characteristics and sea levels), within a 40-year moving window. All parameters of the GEV were tested for statistically significant linear and polynomial trends over time, and best-fitted trends have been detected. Different copula functions were fitted at the 40-year moving windows, to model the dependence structure of extreme offshore significant wave heights and peak spectral periods, and of wave-induced sea levels on the shoreline and nearshore sea levels due to storm surges. The most appropriate bivariate models were then selected. Statistically significant polynomial trends were detected in the dependence parameters of the selected copulas, and time-dependent most likely bivariate events were extracted to be used in the estimation of the TWL at the shoreline. The methods of the present work were implemented in three selected Greek coastal areas in the Aegean Sea. The analysis revealed different variations in the most likely estimates of the offshore wave characteristics and nearshore storm surges in the three study areas, as well as in the time-dependent estimates of TWL at the shoreline. The approach combines nonstationarity and bivariate analysis, blends coastal and offshore marine features and finally provides non-trivial alterations in the response of coastal sea level dynamics to climate change signals, compared to former work on the subject. The methodology produces reasonable estimates of design quantities for coastal structures and boundary conditions for the assessment of flood hazard and risk in coastal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adloff F, Somot S, Sevault F, Jordà G, Aznar R, Déqué M, Herrmann M, Marcos M, Dubois C, Padorno E, Alvarez-Fanjul E, Gornis D (2015) Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim Dyn 45(9–10):2775–2802

    Google Scholar 

  • AghaKouchak A, Bárdossy A, Habib E (2010) Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed copula. Adv Water Resour 33(6):624–634

    Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Google Scholar 

  • Anagnostopoulou C, Zanis P, Katragkou E, Tegoulias I, Tolika K (2014) Recent past and future patterns of the Etesian winds based on regional scale climate model simulations. Clim Dyn 42(7–8):1819–1836

    Google Scholar 

  • Androulidakis YS, Kombiadou KD, Makris CV, Baltikas VN, Krestenitis YN (2015) Storm surges in the Mediterranean Sea: variability and trends under future climatic conditions. Dyn Atmos Oceans 71:56–82

    Google Scholar 

  • Baldock TE (2006) Long wave generation by the shoaling and breaking of transient wave groups on a beach. Proc R Soc A 462:1853–1876

    Google Scholar 

  • Baldock TE, Huntley DA, Bird PAD, O’Hare T, Bullock GN (2000) Breakpoint generated surf beat induced by bichromatic wave groups. Coast Eng 39(2–4):213–242

    Google Scholar 

  • Bardet L, Duluc CM, Rebour V, L’Her J (2011) Regional frequency analysis of extreme storm surges along the French coast. Nat Hazard Earth Syst Sci 11(6):1627–1639

    Google Scholar 

  • Bender J, Wahl T, Jensen J (2014) Multivariate design in the presence of non-stationarity. J Hydrol 514:123–130

    Google Scholar 

  • Benetazzo A, Fedele F, Carniel S, Ricchi A, Bucchignani E, Sclavo M (2012) Wave climate of the Adriatic Sea: a future scenario simulation. Nat Hazard Earth Syst Sci 12(6):2065–2076

    Google Scholar 

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions. 1. Model description and validation. J Geophys Res 104:7649–7666

    Google Scholar 

  • Bulteau T, Lecacheux S, Lerma AN, Paris F (2013) Spatial extreme value analysis of significant wave heights along the French coast. In: Proceedings of the EVAN2013, Siegen, Germany

  • Butler A, Heffernan JE, Tawn JA, Flather RA (2007) Trend estimation in extremes of synthetic North Sea surges. J R Stat Soc Ser C 56(4):395–414

    Google Scholar 

  • Callaghan DP, Nielsen P, Short A, Ranasinghe R (2008) Statistical simulation of wave climate and extreme beach erosion. Coast Eng 55(5):375–390

    Google Scholar 

  • Carillo A, Sannino G, Artale V, Ruti PM, Calmanti S, Dell’Aquila A (2012) Steric sea level rise over the Mediterranean Sea: present climate and scenario simulations. Clim Dyn 39(9–10):2167–2184

    Google Scholar 

  • Casas-Prat M, Sierra JP (2011) Future scenario simulations of wave climate in the NW Mediterranean Sea. J Coastal Res SI 64:200–204

    Google Scholar 

  • Casas-Prat M, Sierra JP (2013) Projected future wave climate in the NW Mediterranean Sea. J Geophys Res-Oceans 118(7):3548–3568

    Google Scholar 

  • Chambers JM (1992) Chapter 4 of statistical models in S. In: Chambers JM, Hastie TJ (eds) Linear models. Wadsworth & Brooks/Cole, Belmont

    Google Scholar 

  • Chebana F, Ouarda TBMJ, Duong TC (2013) Testing for multivariate trends in hydrologic frequency analysis. J Hydrol 486:519–530

    Google Scholar 

  • Coelho C, Lopes D, Freitas P (2009) Morphodynamics classification of Areão Beach, Portugal. J Coast Res SI 56:34–38

    Google Scholar 

  • Coles S (2001) An introduction to statistical modelling of extreme values. Springer Series in Statistics. Springer, Berlin

    Google Scholar 

  • Coles S, Tawn J (2005) Bayesian modelling extreme surges on the UK east coast. Philos Trans A Math Phys Eng Sci 363:1387–1406

    Google Scholar 

  • Conte D, Lionello P (2013) Characteristics of large positive and negative surges in the Mediterranean Sea and their attenuation in future climate scenarios. Glob Planet Change 111:159–173

    Google Scholar 

  • Corbella A, Stretch DD (2013) Simulating a multivariate sea storm using Archimedean copulas. Coast Eng 76:68–78

    Google Scholar 

  • De Haan L, De Ronde J (1998) Sea and wind: multivariate extremes at work. Extremes 1:7–45

    Google Scholar 

  • De Kort J (2007) Modelling tail dependence using copulas-literature review. http://ta.twi.tudelft.nl/nw/users/vuik/numanal/kort_scriptie.pdf. Accessed 23 Dec 2017

  • De Michele C, Salvadori G, Passoni G, Vezzoli R (2007) A multivariate model of sea storms using copulas. Coast Eng 54(10):734–751

    Google Scholar 

  • Dean R, Dalrymple RA (2002) Coastal processes with engineering applications. Cambridge University Press, New York

    Google Scholar 

  • Dickinson R, Errico R, Giorgi F, Bates G (1989) A regional climate model for the western United States. Clim Change 15(3):383–422

    Google Scholar 

  • Ferreira JA, Guedes Soares C (2002) Modelling bivariate distributions of significant wave height and mean period. Appl Ocean Res 24:31–45

    Google Scholar 

  • Gaertner MA, Jacob D, Gil V, Dominguez M, Padorno E, Sanchez E, Castro M (2007) Tropical cyclones over the Mediterranean Sea in climate change simulations. Geophys Res Lett 34(14):L14711

    Google Scholar 

  • Galiatsatou P (2007) Joint exceedance probabilities of extreme waves and storm surges. In: XXXIII IAHR Congress, pp 780 (abstract), JFK Competition

  • Galiatsatou P, Prinos P (2008) Non-stationary point process models for extreme storm surges. In: Flood risk management: research and practice: proceedings of the Floodrisk 2008. Oxford, pp 1045–1054

  • Galiatsatou P, Prinos P (2014) Analysing the effects of climate change on wave height extremes in the Greek Seas. In: Lehfeldt R, Kopmann R (eds) Proceedings of the ICHE 2014, Hamburg© 2014 Bundesanstalt für Wasserbau, pp 773–781. ISBN 978-3-939230-32-8

  • Galiatsatou P, Prinos P (2015) Estimating the effects of climate change on storm surge extremes in the Greek Seas. In: Proceedings of the 36th IAHR World Congress, The Hague

  • Galiatsatou P, Prinos P (2016) Joint probability analysis of extreme wave heights and storm surges in the Aegean Sea in a changing climate. In: E3S Web of Conferences, vol 7. EDP Sciences, p 02002. https://doi.org/10.1051/e3sconf/20160702002

    Google Scholar 

  • Galiatsatou P, Anagnostopoulou C, Prinos P (2016) Modelling nonstationary extreme wave heights in present and future climates of Greek Seas. Water Sci Eng 9(1):21–32

    Google Scholar 

  • Gaslikova L, Grabemann I, Groll N (2013) Changes in North Sea storm surge conditions for four transient future climate realizations. Nat Hazards 66(3):1501–1518

    Google Scholar 

  • Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insur Math Econ 44(2):199–213

    Google Scholar 

  • Goda Y (2000) Random sea and design of maritime structures, 2nd edn. World Scientific, Singapore

    Google Scholar 

  • Gouldby B, Méndez FJ, Guanche Y, Rueda A, Mínguez R (2014) A methodology for deriving extreme nearshore conditions for structural design and flood risk analysis. Coast Eng 88:15–24

    Google Scholar 

  • Gräler B, van den Berg MJ, Vandenberghe S, Petroselli A, Grimaldi S, De Baets B, Verhoest NEC (2013) Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrol Earth Syst Sci 17:1281–1296

    Google Scholar 

  • Grimaldi S, Serinaldi F (2006) Design hyetographs analysis with 3-copula function. Hydrol Sci J 51(2):223–238

    Google Scholar 

  • Heffernan JE, Tawn JA (2004) A conditional approach for multivariate extreme values. J R Stat Soc Ser B 66(3):497–546 (with discussion)

    Google Scholar 

  • Hipel KW, McLeod AI (2005) Time Series Modelling of Water Resources and Environmental Systems. Electronic reprint of the book originally published in 1994, http://www.stats.uwo.ca/faculty/aim/1994Book/. Accessed 23 Dec 2017

  • Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J R Stat Soc Ser B 52:105–124

    Google Scholar 

  • Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments. Cambridge University Press, Cambridge

    Google Scholar 

  • Hsu CH, Olivera F, Irish JL (2018) A hurricane surge risk assessment framework using the joint probability method and surge response functions. Nat Hazards 91(1):7–28

    Google Scholar 

  • IPCC (2007) Climate change 2007: the scientific basis. In: Solomon S et al (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate change. Cambridge University Press, New York

    Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB et al (eds) A Special Report of Working Groups I and II of the Inter-governmental Panel on Climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 1535

    Google Scholar 

  • Janga Reddy M, Ganguli P (2012) Application of copulas for derivation of drought severity–duration–frequency curves. Hydrol Process 26(11):1672–1685

    Google Scholar 

  • Jiang C, Xiong L, Xu CY, Guo S (2015) Bivariate frequency analysis of nonstationary low-flow series based on the time-varying copula. Hydrol Process 29(6):1521–1534

    Google Scholar 

  • Joe H, Xu JJ (1996) The estimation method of inference functions for margins for multivariate models. Working paper, Department of Statistics, University of British Columbia

  • Jonathan P, Randell D, Wu Y, Ewans K (2014a) Return level estimation from non-stationary spatial data exhibiting multidimensional covariate effects. Ocean Eng 88:520–532

    Google Scholar 

  • Jonathan P, Ewans K, Randell D (2014b) Non-stationary conditional extremes of northern North Sea storm characteristics. Environmetrics 25(3):172–188

    Google Scholar 

  • Kao SC, Govindaraju RS (2008) Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resour Res 44(2):W02415. https://doi.org/10.1029/2007WR006261

    Article  Google Scholar 

  • Kapelonis ZG, Gavriliadis PN, Athanassoulis GA (2015) Extreme value analysis of dynamical wave climate projections in the Mediterranean Sea. Proc Comput Sci 66:210–219

    Google Scholar 

  • Krestenitis YN, Androulidakis YS, Kontos YN, Georgakopoulos G (2011) Coastal inundation in the north-eastern Mediterranean coastal zone due to storm surge events. J Coast Conserv 15(3):353–368

    Google Scholar 

  • Krestenitis Y, Androulidakis Y, Kombiadou K, Makris C, Baltikas V (2014) Modeling storm surges in the Mediterranean Sea under the A1B climate scenario, Proc. 12th International Conference on Meteorology, Climatology and Atmospheric Physics (COMECAP), Heraklion (Crete), Greece, 28–31 May 2014, pp 91–95

  • Kwon HH, Lall U (2016) A copula-based nonstationary frequency analysis for the 2012–2015 drought in California. Water Resour Res 52(7):5662–5675

    Google Scholar 

  • Leonard M, Westra S, Phatak A, Lambert M, van den Hurk B, McInnes K, Risbey J, Schuster S, Jakob D, Stafford-Smith M (2014) A compound event framework for understanding extreme impacts. WIRES Clim Change 5:113–128

    Google Scholar 

  • Li F, Van Gelder PHAJM, Ranasinghe R, Callaghan DP, Jongejan RB (2014) Probabilistic modelling of extreme storms along the Dutch coast. Coast Eng 86:1–13

    Google Scholar 

  • Lionello P, Cogo S, Galati MB, Sanna A (2008) The Mediterranean surface wave climate inferred from future scenario simulations. Glob Planet Change 63:152–162

    Google Scholar 

  • Lopeman M, Deodatis G, Franco G (2015) Extreme storm surge hazard estimation in lower Manhattan. Nat Hazards 78(1):355–391

    Google Scholar 

  • Maheras P (1980) The problem of Etesians [Le probleme des Etesiens]. Mediterranée 40:57–66

    Google Scholar 

  • Makris CV, Krestenitis YN (2009) Free educational software on maritime hydrodynamics, coastal engineering and oceanography. In: Proceedings of the 9th Pan-Hellenic symposium of oceanography and fisheries, vol 1, pp 546–551 (in Greek)

  • Makris CV, Androulidakis YS, Krestenitis YN, Kombiadou KD, Baltikas VN (2015) Numerical modelling of storm surges in the Mediterranean Sea under climate change. In: Proceedings of the 36th IAHR World Congress, The Hague

  • Makris C, Galiatsatou P, Tolika K, Anagnostopoulou C, Kombiadou K, Prinos P, Velikou K, Kapelonis Z, Tragou E, Androulidakis Y, Athanassoulis G, Vagenas C, Tegoulias I, Baltikas V, Krestenitis Y, Gerostathis T, Belibassakis K, Rusu E (2016) Climate change effects on the marine characteristics of the Aegean and Ionian Seas. Ocean Dyn 66(12):1603–1635

    Google Scholar 

  • Marcos M, Tsimplis MN (2008) Coastal sea level trends in Southern Europe. Geophys J Int 175(1):70–82

    Google Scholar 

  • Martucci G, Carniel S, Chiggiato J, Sclavo M, Lionello P, Galati MB (2010) Statistical trend analysis and extreme distribution of significant wave height from 1958 to 1999—an application to the Italian Seas. Ocean Sci 6(2):525–538

    Google Scholar 

  • Masina M, Lamberti A, Archetti R (2015) Coastal flooding: a copula based approach for estimating the joint probability of water levels and waves. Coast Eng 97:37–52

    Google Scholar 

  • Mazas F, Hamm L (2017) An event-based approach for extreme joint probabilities of waves and sea levels. Coast Eng 122:44–59

    Google Scholar 

  • McInnes KL, Macadam I, Hubbert GD, O’Grady JG (2009) A modelling approach for estimating the frequency of sea level extremes and the impact of climate change in southeast Australia. Nat Hazards 51(1):115–137

    Google Scholar 

  • Méndez FJ, Menéndez Μ, Luceño Α, Losada ΙJ (2006) Estimation of the long-term variability of extreme significant wave height using a time-dependent Peak Over Threshold (POT) model. J Geophys Res 111(7):C07024

    Google Scholar 

  • Méndez FJ, Menéndez M, Luceño A, Medina R, Graham NE (2008) Seasonality and duration in extreme value distributions of significant wave height. Ocean Eng 35(1):131–138

    Google Scholar 

  • Menéndez M, Méndez FJ, Izaguirre C, Luceño A, Losada IJ (2009) The influence of seasonality on estimating return values of significant wave height. Coast Eng 56(3):211–219

    Google Scholar 

  • Morton ID, Bowers J (1996) Extreme value analysis in a multivariate offshore environment. Appl Ocean Res 8:303–317

    Google Scholar 

  • Nelsen RB (2006) An introduction to copulas, 2nd edn, Lecture Notes in Statistics. Springer, New York

  • Plant NG, Stockdon HF (2015) How well can wave runup be predicted? Comment on Laudier et al.(2011) and Stockdon et al.(2006). Coast Eng 102:44–48

    Google Scholar 

  • Pugh DT (1996) Tides, surges and mean sea-level (reprinted with corrections). John Wiley and Sons

  • Rai RK, Upadhyay A, Ojha CSP, Lye LM (2013) Statistical analysis of hydro-climatic variables. In: Surampalli RY, Zhang TC, Ojha CSP, Gurjar BR, Tyagi RD, Kao CM (eds) Climate change modelling, mitigation, and adaptation. ASCE, Reston. https://doi.org/10.1061/9780784412718

    Chapter  Google Scholar 

  • Repko A, Van Gelder PHAJM, Voortman HG, Vrijling JK (2004) Bivariate description of offshore wave conditions with physics-based extreme value statistics. Appl Ocean Res 26:162–170

    Google Scholar 

  • Ridder N, de Vries H, Drijfhout S, van den Brink H, van Meijgaard E, de Vries H (2018) Extreme storm surge modelling in the North Sea. Ocean Eng 68:255–272

    Google Scholar 

  • Roeckner E, Brokopf R, Esch M, Giorgetta MA, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Climate 19(16):3771–3791

    Google Scholar 

  • Rueda A, Camus P, Tomás A, Vitousek S, Méndez FJ (2016) A multivariate extreme wave and storm surge climate emulator based on weather patterns. Ocean Model 104:242–251

    Google Scholar 

  • Rutkowska A (2015) Properties of the Cox–Stuart test for trend in application to hydrological series: the simulation study. Commun Stat-Simul Comput. 44(3):565–579

    Google Scholar 

  • Salvadori G, De Michele C (2010) Multivariate multiparameter extreme value models and return periods: a copula approach. Water Resour Res 46(10):W10501. https://doi.org/10.1029/2009WR009040

    Article  Google Scholar 

  • Salvadori G, De Michele C, Durante F (2011) Multivariate design via copulas. Hydrol Earth Syst Sci Discuss 8(3):5523–5558

    Google Scholar 

  • Sánchez-Arcilla A, Gomez-Aguar J, Egozcue JJ, Ortego MI, Galiatsatou P, Prinos P (2008) Extremes from scarce data. The role of Bayesian and scaling techniques in reducing uncertainty. J Hydraul Res 46(2):224–234

    Google Scholar 

  • Sartini L, Besio G, Cassola F (2017) Spatio-temporal modelling of extreme wave heights in the Mediterranean Sea. Ocean Model 117:52–69

    Google Scholar 

  • Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, pp 109–230

    Google Scholar 

  • Serafin KA, Ruggiero P (2014) Simulating extreme total water levels using a time-dependent extreme value approach. J Geophys Res Oceans 119:6305–6329

    Google Scholar 

  • Serafin KA, Ruggiero P, Stockdon HF (2017) The relative contribution of waves, tides, and nontidal residuals to extreme total water levels on U.S. West Coast sandy beaches. Geophys Res Lett 44:1839–1847

    Google Scholar 

  • Shiau JT (2006) Fitting drought duration and severity with two dimensional copulas. Water Resour Manag 20(5):795–815

    Google Scholar 

  • Short AD (1999) Handbook of beach and shoreface morphodynamics, vol XII. Wiley, New York

    Google Scholar 

  • Singh VP, Zhang L (2007) IDF curves using the Frank Archimedean copula. J Hydrol Eng 12(6):651–662

    Google Scholar 

  • Somot S, Sevault F, Déqué M, Crépon M (2008) 21st century climate change scenario for the Mediterranean using a coupled atmosphere–ocean regional climate model. Glob Planet Change 63(2):112–126

    Google Scholar 

  • Sterl A, Brink HVD, Vries HD, Haarsma R, Meijgaard EV (2009) An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate. Ocean Sci. 5(3):369–378

    Google Scholar 

  • Stockdon HF, Holman RA, Howd PA, Sallenger AH (2006) Empirical parameterization of setup, swash, and runup. Coast Eng 53:573–588

    Google Scholar 

  • Tolika K, Anagnostopoulou C, Velikou K, Vagenas C (2016) A comparison of the updated very high resolution model RegCM3_10km with the previous version RegCM3_25km over the complex terrain of Greece: present and future projections. Theor Appl Climatol 126(3–4):715–726

    Google Scholar 

  • Tsimplis MN (1994) Tidal oscillations in the Aegean and Ionian Seas. Estuar Coast Shelf Sci 39(2):201–208

    Google Scholar 

  • Tsimplis MN, Proctor R, Flather RA (1995) A two-dimensional tidal model for the Mediterranean Sea. J Geophys Res Oceans 100(C8):16223–16239

    Google Scholar 

  • Tsimplis MN, Calafat FM, Marcos M, Jordà G, Gomis D, Fenoglio-Marc L, Struglia MV, Josey SA, Chambers DP (2013) The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. J Geophys Res-Oceans 118(2):944–952

    Google Scholar 

  • Vagenas C, Anagnostopoulou C, Tolika K (2014) Climatic study of the surface wind field and extreme winds over the Greek seas. In: Proceedings of the 12th COMECAP, Heraklion, Greece

  • Vagenas C, Anagnostopoulou C, Tolika K (2017) Climatic study of the marine surface wind field over the Greek seas with the use of a high resolution RCM focusing on extreme winds. Climate 5(2):29

    Google Scholar 

  • van Gelder PHAJM, Mai C (2008) Distribution functions of extreme sea waves and river discharges. J Hydraul Res 46(2):280–291

    Google Scholar 

  • van Gelder PHAJM (1999) Risk-based design of civil structures. Ph.D.-Thesis, University of Technology, Delft

  • Velikou K, Tolika K, Anagnostopoulou I, Vagenas C (2014) High resolution climate over Greece: assessment and future projections. In: Proceedings of the 12th COMECAP, Heraklion, Greece

  • Wahl T, Mudersbach C, Jensen J (2012) Assessing the hydrodynamic boundary conditions for risk analyses in coastal areas: a multivariate statistical approach based on copula functions. Nat Hazard Earth Syst Sci 12:495–510

    Google Scholar 

  • Wahl T, Plant NG, Long JW (2016) Probabilistic assessment of erosion and flooding risk in the northern Gulf of Mexico. J Geophys Res Oceans 121:3029–3043

    Google Scholar 

  • Yan J (2007) Enjoy the joy of copulas: with a package copula. J Stat Softw 21(4):1–21

    Google Scholar 

  • Yeh SP, Ou SP, Doong DJ, Kao CC, Hsieh DW (2006) Joint probability analysis of waves and water level during typhoons. In: Proceedings of the 3rd Chinese-German joint symposium on coastal and ocean engineering

  • Zhong H, van Overloop P-J, van Gelder P (2013) A joint probability approach using a 1-D hydrodynamic model for estimating high water level frequencies in the Dutch Lower Rhine Delta. Nat Hazard Earth Syst Sci 13:1841–1852

    Google Scholar 

Download references

Acknowledgements

This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Thales. Investing in knowledge society through the European Social Fund (Project CCSEAWAVS: Estimating the effects of climate change on sea level and wave climate of the Greek seas, coastal vulnerability and safety of coastal and marine structures). The second and fourth authors are IKY-SIEMENS post-doc and Ph.D. research fellows under the programme “IKY-SIEMENS excellence scholarships for postdoctoral and doctoral research in Greece by the State Scholarships Foundation (SSF/IKY) (Grant No. 24528/SR) academic year 2016–2017”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiota Galiatsatou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galiatsatou, P., Makris, C., Prinos, P. et al. Nonstationary joint probability analysis of extreme marine variables to assess design water levels at the shoreline in a changing climate. Nat Hazards 98, 1051–1089 (2019). https://doi.org/10.1007/s11069-019-03645-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-019-03645-w

Keywords

Navigation