Skip to main content
Log in

Corticostriatal Regulation of Language Functions

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

The role of corticostriatal circuits in language functions is unclear. In this review, we consider evidence from language learning, syntax, and controlled language production and comprehension tasks that implicate various corticostriatal circuits. Converging evidence from neuroimaging in healthy individuals, studies in populations with subcortical dysfunction, pharmacological studies, and brain stimulation suggests a domain-general regulatory role of corticostriatal systems in language operations. The role of corticostriatal systems in language operations identified in this review is likely to reflect a broader function of the striatum in responding to uncertainty and conflict which demands selection, sequencing, and cognitive control. We argue that this role is dynamic and varies depending on the degree and form of cognitive control required, which in turn will recruit particular corticostriatal circuits and components organised in a cognitive hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Recently, Seeley (2019) suggested that there is a further distinction between the cingulo-opercular task-control network and a separate, but anatomically close, saliency network. The cingulo-opercular network described by Dosenbach and colleagues (2007), he suggests, incorporates the dorsal aI and frontal operculum and is involved in task-set initiation and maintenance. In contrast, he suggests that the saliency network, as described by Seeley and colleagues (2007), incorporates the more ventral aI and functions to engage, maintain or switch the task-control network in response to changes in salient stimuli.

References

  • Abdullaev, Y. G., Bechtereva, N. P., & Melnichuk, K. V. (1998). Neuronal activity of human caudate nucleus and prefrontal cortex in cognitive tasks. Behavioral Brain Research, 97, 159–177.

    Article  CAS  Google Scholar 

  • Abutalebi, J., & Green, D. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20(3), 242–275.

    Article  Google Scholar 

  • Abutalebi, J., & Green, D. W. (2008). Control mechanisms in bilingual language production: Neural evidence from language switching studies. Language and Cognitive Processes, 23, 557–582.

    Article  Google Scholar 

  • Abutalebi, J., Rosa, P. A. D., Castro Gonzaga, A. K., et al. (2013). The role of the left putamen in multilingual language production. Brain and Language, 125, 307–315.

    Article  PubMed  Google Scholar 

  • Alegre, M., Lopez-Azcarate, J., Obeso, I., Wilkinson, L., Rodriguez-Oroz, M. C., Valencia, M., Garcia-Garcia, D., Guridi, J., Artieda, J., Jahanshahi, M., & Obeso, J. A. (2013). The subthalamic nucleus is involved in successful inhibition in the stop-signal task: a local field potential study in Parkinson's disease. Experimental Neurology, 239, 1–12.

  • Alexander, C. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking the basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.

    Article  CAS  PubMed  Google Scholar 

  • Ardila, A., Bernal, B., & Rosselli, M. (2016). How localized are language brain areas? A review of Brodmann areas involvement in oral language. Archives of Clinical Neuropsychology, 31, 112–122.

    Article  PubMed  Google Scholar 

  • Argyropoulos, G., Tremblay, P., & Small, S. (2013). The neostriatum and response selection in overt sentence production: An fMRI study. NeuroImage, 82, 53–60.

    Article  PubMed  Google Scholar 

  • Ali, N., Green, D. W., Kherif, F., Devlin, J. T., & Price, C. J. (2010). The role of the left head of caudate in suppressing irrelevant words. Journal of Cognitive Neuroscience, 22(10), 2369–2386.

    Article  PubMed  PubMed Central  Google Scholar 

  • Angwin, A. J., Chenery, H. J., Copland, D. A., Murdoch, B. E., & Silburn, P. A. (2005). Summation of semantic priming and complex sentence comprehension in Parkinson’s disease. Cognitive Brain Research, 25(1), 78–89.

    Article  PubMed  Google Scholar 

  • Angwin, A. J., Chenery, H. J., Copland, D. A., Murdoch, B. E., & Silburn, P. A. (2006). Self-paced reading and sentence comprehension in Parkinson’s disease. Journal of Neurolinguistics, 19, 239–252.

    Article  Google Scholar 

  • Anzak A, Gaynor L, Beigi M, Limousin P, Hariz M, Zrinzo L, Foltynie T, Brown P, Jahanshahi M. (2011). A gamma band specific role of the subthalamic nucleus in switching during verbal fluency tasks in Parkinson's disease. Experimental Neurology, 232, 136–142.

  • Aron, A.R, Poldrack, R.A., & Wise, S.P. (2009): Cognition: basal ganglia role; in Squire LR (ed.): Encyclopedia of Neuroscience, vol 2, pp 1069–1077.

  • Aron, A. R., Shohamy, D., Clark, J., Myers, C., Gluck, M. A., & Poldrack, R. A. (2004). Human midbrain sensitivity to cognitive feedback and uncertainty during classification learning. Journal of Neurophysiology, 92(2), 1144–1152.

    Article  CAS  PubMed  Google Scholar 

  • Arnott, W. L., Copland, D. A., Chenery, H. J., Murdoch, B. E., Silburn, P. A., & Angwin, A. J. (2011). The influence of dopamine on automatic and controlled semantic activation in Parkinson’s disease. Parkinson’s Disease, 2011, 157072.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashby, F. G., & Maddox, W. T. (2005). Human category learning. Annual Review of Psychology, 56, 149–178.

    Article  PubMed  Google Scholar 

  • Averbeck, B.B., Lehman, J., Jacobson, M., & Haber, S.N. (2014). Estimates of projection overlap and zones of convergence within frontal-striatal circuits. Journal of Neuroscience, 34 (29), 9497–9505.

  • Badre, D., Lebrecht, S., Pagliaccio, D., Long, N. M., & Scimeca, J. M. (2014). Ventral striatum and the evaluation of memory retrieval strategies. Journal of Cognitive Neuroscience, 26(9), 1928–1948.

    Article  PubMed  PubMed Central  Google Scholar 

  • Badre, D., & Frank, M. J. (2012). Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: evidence from fMRI. Cerebral Cortex, 22(3), 527–536.

    Article  PubMed  Google Scholar 

  • Bahlmann, J., Schubotz, R. I., & Friederici, A. D. (2008). Hierarchical artificial grammar processing engages Broca's area. NeuroImage, 42(2), 525–534.

  • Bell, P. T., & Shine, J. M. (2016). Subcortical contributions to large-scale network communication. Neuroscience & Biobehavioral Review, 71, 313–322.

    Article  Google Scholar 

  • Berens, S. C., Horst, J. S., & Bird, C. M. (2018). Cross-Situational Learning Is Supported by Propose-but-Verify Hypothesis Testing. Current Biology, 28(7), 1132–1136.

    Article  CAS  PubMed  Google Scholar 

  • Berg, E., Bjornram, C., Hartelius, L., Laakso, K., & Johnels, B. (2003). High-level language difficulties in Parkinson’s disease. Clinical Linguistics and Phonetics, 17(1), 63–80.

    Article  PubMed  Google Scholar 

  • Bhattasali, S., Fabre, M., Luh, W., Saied, H., Constant, M., Pallier, C., et al. (2019). Localising memory retrieval and syntactic composition: an fMRI study of naturalistic language comprehension. Language, Cognition and Neuroscience, 34, 491–510.

    Article  Google Scholar 

  • Bohsali, A., & Crosson, B. (2016). The basal ganglia and language: A tale of two loops. In J.J. Soghomonian (ed.), The Basal Ganglia, Innovations in Cognitive Neuroscience, 217–242.

  • Binder, J. R., McKiernan, K. A., Parsons, M. E., Westbury, C. F., Possing, E. T., Kaufman, J. N., & Buchanan, L. (2003). Neural correlates of lexical access during visual word recognition. Journal of Cognitive Neuroscience, 15, 372–393.

    Article  CAS  PubMed  Google Scholar 

  • Booth, J. R., Wood, L., Lu, D., Houk, J. C., & Bitan, T. (2007). The role of the basal ganglia and cerebellum in language processing. Brain Research, 1133, 136–144.

    Article  CAS  PubMed  Google Scholar 

  • Bouquet, C. A., Bonnaud, V., & Gil, R. (2003). Investigation of supervisory attentional system functions in patients with Parkinson’s disease using the Hayling task. Journal of Clinical and Experimental Neuropsychology, 25(6), 751–760.

    Article  PubMed  Google Scholar 

  • Bradley, K. A., King, K. E., & Hernandez, A. E. (2013). Language experience differentiates prefrontal and subcortical activation of the cognitive control network in novel word learning. NeuroImage, 67, 101–110.

    Article  PubMed  Google Scholar 

  • Brittain, J. S., Watkins, K. E., Joundi, R. A., Ray, N. J., Holland, P., Green, A. L., Aziz, T. Z., & Jenkinson, N. (2012). A role for the subthalamic nucleus in response inhibition during conflict. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(39), 13396–13401.

  • Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: rewarding, aversive, and alerting. Neuron, 68(5), 815–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brownsett, S. L. E., Warren, J., Geranmayeh, F., Woodhead, Z., Leech, R., & Wise, R. (2014). Cognitive control and its impact on recovery from aphasic stroke. Brain, 137, 242–254.

    Article  PubMed  Google Scholar 

  • Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1–47.

    Article  CAS  PubMed  Google Scholar 

  • Calabresi, P., Picconi, B., Tozzi, A., & Di Filippo, M. (2007). Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends in Neurosciences, 30, 211-219.

  • Calabria, M., Costa, A., Green, D. W., & Abutalebi, J. (2018). Neural basis of bilingual language control. Annals of the New York Academy of Sciences. https://doi.org/10.1111/nyas.13879.

    Article  PubMed  Google Scholar 

  • Canini, M., Della Rosa, P. A., Catricalà, E., Strijkers, K., Branzi, F. M., Costa, A., & Abutalebi, J. (2016). Semantic interference and its control: A functional neuroimaging and connectivity study. Human Brain Mapping, 37(11), 4179–4196.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cappa, S. F., & Vallar, G. (1992). Neuropsychological disorders after subcortical lesions: implications for neural models of language and spatial attention. In G. Vallar, S. F. Cappa, & C.-W. Wallesch (Eds.), Neuropsychological Disorders Associated with Subcortical Lesions (pp. 7–41). Oxford: Oxford University Press.

    Google Scholar 

  • Cardona, J. F., Gershanik, O., Gelormini-Lezama, C., Houck, A. L., Cardona, S., Kargieman, L., Trujillo, N., Arévalo, A., Amoruso, L., Manes, F., & Ibáñez, A. (2013). Action-verb processing in Parkinson's disease: new pathways for motor-language coupling. Brain Structure & Function, 218(6), 1355–1373.

  • Castner, J. E., Chenery, H. J., Copland, D. A., Coyne, T. J., Sinclair, F., & Silburn, P. A. (2007). Semantic and affective priming as a function of stimulation of the subthalamic nucleus in Parkinson’s disease. Brain, 130, 1395–1407.

    Article  PubMed  Google Scholar 

  • Castner, J. E., Copland, D. A., Silburn, P. A., Coyne, T. J., Sinclair, F., & Chenery, H. J. (2007). Lexical-semantic inhibitory mechanisms in Parkinson’s disease as a function of subthalamic stimulation. Neuropsychologia, 45(14), 3167–3177.

    Article  PubMed  Google Scholar 

  • Castner, J. E., Chenery, H. J., Silburn, P. A., Coyne, T. J., Sinclair, F., Smith, E. R., & Copland, D. A. (2008). Effects of subthalamic deep brain stimulation on noun/verb generation and selection from competing alternatives in Parkinson's disease. Journal of Neurology, Neurosurgery, and Psychiatry, 79(6), 700–705.

  • Chan, S., Ryan, L., & Bever, T. G. (2013). Role of the striatum in language: Syntactic and conceptual sequencing. Brain and Language, 125, 283–294.

    Article  PubMed  Google Scholar 

  • Chenery, H. J., Angwin, A. J., & Copland, D. A. (2008). The basal ganglia circuits, dopamine, and ambiguous word processing: a neurobiological account of priming studies in Parkinson’s disease. Journal of the International Neuropsychological Society, 14(3), 351–364.

    Article  PubMed  Google Scholar 

  • Chenery, H. J., Copland, D. A., & Murdoch, B. E. (2002). Complex language functions and subcortical mechanisms: evidence from Huntington's disease and patients with non-thalamic subcortical lesions. International Journal of Language & Communication Disorders, 37(4), 459–474.

  • Cilia, R., Siri, C., Marotta, G., De Gaspari, D., Landi, A., Mariani, C. B., Benti, R., Isaias, I. U., Vergani, F., Pezzoli, G., & Antonini, A. (2007). Brain networks underlining verbal fluency decline during STN-DBS in Parkinson's disease: an ECD-SPECT study. Parkinsonism & Related Disorders, 13(5), 290–294.

  • Cohen, M. X., & Frank, M. J. (2009). Neurocomputational models of basal ganglia function in learning, memory and choice. Behavioural Brain Research, 199(1), 141–156.

    Article  PubMed  Google Scholar 

  • Cohen, J. D., & Servan-Schreiber, D. (1992). Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychological Review, 99(1), 45–77.

    Article  CAS  PubMed  Google Scholar 

  • Cools, R., Gibbs, S. E., Miyakawa, A., Jagust, W., & D’esposito, M. (2008). Working memory capacity predicts dopamine synthesis capacity in the human striatum. Journal of Neuroscience, 28, 1208–1212.

    Article  CAS  PubMed  Google Scholar 

  • Copland, D. (2003). The basal ganglia and semantic engagement: Potential insights from semantic priming in individuals with subcortical vascular lesions, Parkinson’s disease, and cortical lesions. Journal of the International Neuropsychological Society, 9(7), 1041–1052.

    Article  PubMed  Google Scholar 

  • Copland, D. A., Chenery, H. J., & Murdoch, B. E. (2000a). Persistent deficits in complex language function following dominant nonthalamic subcortical lesions. Journal of Medical Speech Language Pathology, 8, 1–15.

    Google Scholar 

  • Copland, D. A., Chenery, H. J., & Murdoch, B. E. (2000b). Processing lexical ambiguities in word triplets: Evidence of lexical-semantic deficits following dominant nonthalamic sub-cortical lesions. Neuropsychology, 14(3), 379–390.

    Article  CAS  PubMed  Google Scholar 

  • Copland, D. A., Chenery, H. J., & Murdoch, B. E. (2000c). Understanding ambiguous words in biased sentences: Evidence of transient contextual effects in individuals with nonthalamic subcortical lesions and Parkinson’s disease. Cortex, 36(5), 601–622.

    Article  CAS  PubMed  Google Scholar 

  • Copland, D. A., Chenery, H. J., & Murdoch, B. E. (2001). Discourse priming of homophones in individuals with dominant nonthalamic subcortical lesions, cortical lesions and Parkinson’s disease. Journal of Clinical and Experimental Neuropsychology, 23, 538–556.

    Article  CAS  PubMed  Google Scholar 

  • Copland, D. A., de Zubicaray, G. I., McMahon, K., & Eastburn, M. (2007). Neural correlates of semantic priming for ambiguous words: an event-related fMRI study. Brain Research, 1131(1), 163–172.

  • Crinion, J., Turner, R., Grogan, A., Hanakawa, T., Noppeney, U., Devlin, J. T., Price, C. J. (2006). Language control in the bilingual brain. Science, 312(5779), 1537–1540.

  • Crossley, N. A., Mechelli, A., Scott, J., Carletti, F., Fox, P. T., McGuire, P., & Bullmore, E. T. (2014). The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain: a Journal of Neurology, 137(Pt 8), 2382–2395.

  • Crosson, B. (1985). Subcortical functions in language: a working model. Brain and Language, 25, 257–292.

    Article  CAS  PubMed  Google Scholar 

  • Crosson, B. (1992). Subcortical functions in language and memory. New York: Guilford Press.

    Google Scholar 

  • Crosson, B., Bejamin, M., & Levy, I. (2007). Role of the basal ganglia in language and semantics: Supporting cast. In J. Hart, Jr. & M. A. Kraut (Eds.), Neural basis of semantic memory (p. 219–243). Cambridge University Press.

  • Crosson, B., Benefield, H., Cato, M. A., Sadek, J. R., Moore, A. B., Wierenga, C. E., et al. (2003). Left and right basal ganglia and frontal activity during language generation: contributions to lexical, semantic, and phonological processes. Journal of the International Neuropsychological Society, 9(7), 1061–1077.

    Article  PubMed  Google Scholar 

  • Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50(8), 873–880.

  • Divac, I., Oberg, G., & Rosenkilde, C. (1987). Patterned neural activity: implications for neurology and neuropharmacology. In J. S. Schneider & T. I. Lidsky (Eds.), Basal Ganglia and Behavior: Sensory Aspects of Motor Functioning . Huber, NY: Lewistown.

  • Davis, M. H., & Gaskell, M. G. (2009). A complementary systems account of word learning: Neural and behavioural evidence. Philosophical Transactions of the Royal Society B-Biological Sciences, 364(1536), 3773–3800.

    Article  PubMed Central  Google Scholar 

  • De Diego-Balaguer, R., Couette, M., Dolbeau, G., Dürr, A., Youssov, K., & Bachoud-Lévi, A. C. (2008). Striatal degeneration impairs language learning: evidence from Huntington’s disease. Brain, 131(11), 2870–2881.

    Article  PubMed  Google Scholar 

  • De Letter, M., Bruggeman, A., Keyser, K. D., Van Mierlo, P., Buysse, H., Van Roost, D., & Santens, P. (2020). Subthalamic nucleus activity in the processing of body and mental action verbs in people with Parkinson’s disease. Brain and Language, 202, 104738.

    Article  PubMed  Google Scholar 

  • Dockès, J., Poldrack, R. A., Primet, R., Gözükan, H., Yarkoni, T., Suchanek, F., Thirion, B., & Varoquaux, G. (2020). NeuroQuery, comprehensive meta-analysis of human brain mapping. eLife9, e53385.

  • Dominey, P.F., Inui, T., & Hoen, M. (2009). Neural network processing of natural language: II. Towards a unified model of corticostriatal function in learning sentence comprehension and non-linguistic sequencing. Brain and Language, 109(2–3), 80–92. https://doi.org/10.1016/j.bandl.2008.08.00

  • Dosenbach, N. U., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences USA, 104, 11073–11078.

    Article  CAS  Google Scholar 

  • Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual networks architecture of top-down control. Trends in Cognitive Sciences, 12, 99–105.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475–483.

    Article  CAS  PubMed  Google Scholar 

  • Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14, 172–179.

    Article  PubMed  Google Scholar 

  • Fasano, A., Daniele, A., & Albanese, A. (2012). Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. The Lancet. Neurology, 11(5), 429–442.

    Article  PubMed  Google Scholar 

  • Fedorenko, E., & Thompson-Schill, S. L. (2014). Reworking the language network. Trends in cognitive sciences, 18(3), 120–126.

  • Ford, A., Triplett, W., Sudhyadhom, A., Gullett, J., McGregor, K., FitzGerald, D. B., et al. (2013). Broca’s area and its striatal and thalamic connections: a diffusion-MRI tractography study. Frontiers in Neuroanatomy, 7(8), 1–12.

    Google Scholar 

  • Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17(1), 51–72.

    Article  PubMed  Google Scholar 

  • Frank, M. J. (2006). Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Networks, 19(8), 1120–1136.

    Article  PubMed  Google Scholar 

  • Frank, M. J., & Badre, D. (2012). Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1: computational analysis. Cerebral Cortex, 22(3), 509–526.

    Article  PubMed  Google Scholar 

  • Friederici, A. D., & Gierhan, S. M. (2013). The language network. Current Opinion in Neurobiology, 23(2), 250–254.

    Article  CAS  PubMed  Google Scholar 

  • Friederici, A. D., & Kotz, S. A. (2003). The brain basis of syntactic processes: functional imaging and lesion studies. NeuroImage, 20, S8–S17.

    Article  PubMed  Google Scholar 

  • García, A. M., Carrillo, F., Orozco-Arroyave, J. R., Trujillo, N., Bonilla, J. F. V., Fittipaldi, S., et al. (2016). How language flows when movements don’t: an automated analysis of spontaneous discourse in Parkinson’s disease. Brain and Language, 162, 19–28.

    Article  PubMed  Google Scholar 

  • García, A. M., Sedeño, L., Trujillo, N., Bocanegra, Y., Gomez, D., Pineda, D., et al. (2017). Language deficits as a preclinical window into Parkinson’s disease: evidence from asymptomatic parkin and dardarin mutation carriers. Journal of the International Neuropsychological Society, 23, 150–158.

    Article  PubMed  Google Scholar 

  • Geranmayeh, F., Brownsett, S. L. E., & Wise, R. (2014). Task-induced brain activity in aphasic stroke patients: what is driving recovery? Brain, 137(10), 2632–2648.

    Article  PubMed  PubMed Central  Google Scholar 

  • Geranmayeh, F., Chau, T. W., Wise, R. J. S., Leech, R., & Hampshire, A. (2017). Domain-general subregions of the medial prefrontal cortex contribute to recovery of language after stroke. Brain, 140, 1947–1958.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghio, M., Haegert, K., Vaghi, M. M., & Tettamanti, M. (2018). Sentential negation of abstract and concrete conceptual categories: a brain decoding multivariate pattern analysis study. Philosophical Transactions of the Royal Society B, 373, 20170124.

    Article  Google Scholar 

  • Giavazzi, M., Daland, R., & Palminteri, S. (2018). The role of the striatum in linguistic selection: Evidence from Huntington’s disease and computational modelling. Cortex, 109, 189–204.

    Article  PubMed  Google Scholar 

  • Grossman, M., Carvell, S., Stern, M. B., Gollomp, S., & Hurtig, H. I. (1992). Sentence comprehension in Parkinson’s disease: The role of attention and memory. Brain and Language, 42, 347–384.

    Article  CAS  PubMed  Google Scholar 

  • Grossman, M., Cooke, A., DeVita, C., Lee, C., Alsop, D., Detre, J., et al. (2003). Grammatical and resource components of sentence processing in Parkinson’s disease: An fMRI study. Neurology, 60, 775–781.

    Article  CAS  PubMed  Google Scholar 

  • Grossman, M., Lee, C., Morris, J., Stern, M. B., & Hurtig, H. I. (2002a). Assessing resource demands during sentence processing in Parkinson’s disease. Brain and Language, 80(3), 603–616.

    Article  PubMed  Google Scholar 

  • Grossman, M., Zurif, E., Lee, C., Prather, P., Kalmanson, J., Stern, M. B., et al. (2002b). Information processing speed and sentence comprehension in Parkinson’s disease. Neuropsychology, 16(2), 174–181.

    Article  PubMed  Google Scholar 

  • Haber, S. N. (2003). The primate basal ganglia: parallel and integrative networks. Journal of Chemical Neuroanatomy, 26, 317–330.

    Article  PubMed  Google Scholar 

  • Haber, S. N., Kim, K. S., Mailly, P., & Calzavara, R. (2006). Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. The Journal of Neuroscience, 26(32), 8368–8376

  • Hagoort, P. (2005). On Broca, brain, and binding: a new framework. Trends in Cognitive Science, 9, 416–423.

    Article  Google Scholar 

  • Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2006). Banishing the homunculus: making working memory work. Neuroscience, 139(1), 105–118.

    Article  CAS  PubMed  Google Scholar 

  • Henry, J. D., & Crawford, J. R. (2004). Verbal fluency deficits in Parkinson’s disease: a meta-analysis. Journal of the International Neuropsychological Society, 10(4), 608–622.

    Article  PubMed  Google Scholar 

  • Houk, J. C., Bastianen, C., Fansler, D., Fishbach, A., Fraser, D., Reber, P. J., Roy, S. A., & Simo, L. S. (2007). Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 362(1485), 1573–1583.

  • Houk, J. C., & Wise, S. P. (1995). Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cerebral Cortex, 5(2), 95–110.

    Article  CAS  PubMed  Google Scholar 

  • Hillis, A. E., Wityk, R. J., Barker, P. B., Beauchamp, N. J., Gailoud, P., Murphy, K., et al. (2002). Subcortical aphasia and neglect in acute stroke: The role of cortical hypoperfusion. Brain, 125, 1094–1104.

    Article  CAS  PubMed  Google Scholar 

  • Inase, M., Tokuno, H., & Nambu, A. (1999). Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Research, 833, 191–201.

    Article  CAS  PubMed  Google Scholar 

  • Isaacs, M. L., McMahon, K. L., Angwin, A. J., Crosson, B., & Copland, D. A. (2019). Functional correlates of strategy formation and verbal suppression in Parkinson’s disease. NeuroImage. Clinical, 22, 101683.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeon, H. A., Anwander, A., & Friederici, A. D. (2014). Functional network mirrored in the prefrontal cortex, caudate nucleus, and thalamus: High-resolution functional imaging and structural connectivity. Journal of Neuroscience, 34, 9202–9212.

    Article  CAS  PubMed  Google Scholar 

  • Joel, D., & Weiner, I. (2000). The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience, 96, 451–474.

    Article  CAS  PubMed  Google Scholar 

  • Johari, K., Walenski, M., Reifegerste, J., Ashrafi, F., Behroozmand, R., Daemi, M., & Ullman, M. T. (2019). A dissociation between syntactic and lexical processing in Parkinson’s disease. Journal of Neurolinguistics, 51, 221–235.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johari, K., Walenski, M., Reifegerste, J., Ashrafi, F., & Ullman, M. T. (2019). Sex, dopamine, and hypokinesia: a study of inflectional morphology in Parkinson’s disease. Neuropsychology, 33, 508–522.

    Article  PubMed  Google Scholar 

  • Ketteler, D., Kastrau, F., Vohn, R., Huber, W. (2008). The subcortical role of language pro cessing. High level linguistic features such as ambiguity-resolution and the human brain; an fMRI study. NeuroImage, 39(4), 2002–2009.

  • Ketteler, S., Ketteler, D., Vohn, R., Kastrau, F., Schulz, J. B., Reetz, K., & Huber, W. (2014). The processing of lexical ambiguity in healthy ageing and Parkinsons disease: Role of cortico-subcortical networks. Brain Research, 1581, 51–63.

    Article  CAS  PubMed  Google Scholar 

  • Kemmerer, D. (1999). Impaired comprehension of raising- to- subject constructions in Parkinson’s disease. Brain and Language, 66, 311–328.

    Article  CAS  PubMed  Google Scholar 

  • Korb, F. M., Jiang, J., King, J. A., & Egner, T. (2017). Hierarchically Organized Medial Frontal Cortex-Basal Ganglia Loops Selectively Control Task- and Response-Selection. The Journal of neuroscience : the official journal of the Society for Neuroscience, 37(33), 7893–7905.

    Article  CAS  Google Scholar 

  • Kotz, S. A., Cappa, S. F., von Cramon, D. Y., & Friederici, A. D. (2002). Modulation of the lexical-semantic network by auditory semantic priming: An event-related functional MRI study. NeuroImage, 17, 1761–1772.

    Article  PubMed  Google Scholar 

  • Kotz, S. A., & Schwartze, M. (2010). Cortical speech processing unplugged: a timely subcortico-cortical framework. Trends in Cognitive Sciences, 14(9), 392–399.

    Article  PubMed  Google Scholar 

  • Kotz, S. A., Schwartze, M., & Schmidt-Kassow, M. (2009). Non-motor basal ganglia functions: a review and proposal for a model of sensory predictability in auditory language perception. Cortex, 45(8), 982–990.

    Article  PubMed  Google Scholar 

  • Krishnan, S., Watkins, K.E., & Bishop, D.V. (2016). Neurobiological basis of language learning difficulties. Trends in Cognitive Sciences, 20(9), 701–714.

  • Lawrence, A. D., Sahakian, B. J., & Robbins, T. W. (1998). Cognitive functions and corticostriatal circuits: insights from Huntington’s disease. Trends in Cognitive Sciences, 2(10), 379–388.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C., Grossman, M., Morris, J., Stern, M.B., & Hurtig, H.I. (2003). Attentional resource and processing speed limitations during sentence processing in Parkinson’s disease. Brain and Language, 85, 347–356.

  • Lehericy, S., Ducros, M., Krainik, A., Francois, C., Van de Moortele, P., Ugurbil, K., & Kim, D. (2004). 3-D diffusion tensor axonal tracking shows distinct SMA and Pre-SMA projections to the human striatum. Cerebral Cortex, 14, 1302–1309.

    Article  PubMed  Google Scholar 

  • Lehricy, S., Ducros, M., Van de Moortele, P., Francois, C., Thivard, L., Poupon, C., et al. (2004). Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Annals of Neurology, 55, 522–529.

    Article  Google Scholar 

  • Lewis, F. M., Lapointe, L. L., Murdoch, B. E., & Chenery, H. J. (1998). Language impairment in Parkinson’s disease. Aphasiology, 12(3), 193–206.

    Article  Google Scholar 

  • Longworth, C. E., Keenan, S. E., Barker, R. A., Marslen-Wilson, W. D., & Tyler, L. K. (2005). The basal ganglia and rule-governed language use: Evidence from vascular and degenerative conditions. Brain, 128(3), 584–596.

    Article  CAS  PubMed  Google Scholar 

  • López-Barroso, D., Ripollés, P., Marco-Pallarés, J., Mohammadi, B., Münte, T. F., Bachoud-Lévi, A. C., et al. (2015). Multiple brain networks underpinning word learning from fluent speech revealed by independent component analysis. NeuroImage, 110, 182–193.

    Article  PubMed  Google Scholar 

  • Mason, R. A., & Just, M. A. (2007). Lexical ambiguity in sentence comprehension. Brain Research, 1146, 115–127.

  • McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11(1), 103–107.

    Article  CAS  PubMed  Google Scholar 

  • Mega, M. S., & Alexander, M. P. (1994). Subcortical aphasia: the core profile of capsulostriatal infarction. Neurology, 44(10), 1824–1829.

    Article  CAS  PubMed  Google Scholar 

  • Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Structure and Function, 214, 655–667.

    Article  PubMed  Google Scholar 

  • Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15, 483–506.

    Article  PubMed  Google Scholar 

  • Mestres-Missé, A., Bazin, P. L., Trampel, R., Turner, R., & Kotz, S. A. (2014). Dorsomedial striatum involvement in regulating conflict between current and presumed outcomes. NeuroImage, 98, 159–167.

    Article  PubMed  Google Scholar 

  • Mestres-Missé, A., Trampel, R., Turner, R., & Kotz, S. A. (2017). Uncertainty and expectancy deviations require cortico-subcortical cooperation. NeuroImage, 144(Pt A), 23–34.

    Article  PubMed  Google Scholar 

  • Mestres-Misse, A., Turner, R., & Friederici, A. D. (2012). An anterior–posterior gradient of cognitive control within the dorsomedial striatum. NeuroImage, 62, 41–47.

    Article  PubMed  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research Review, 31, 236–250.

    Article  CAS  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.

    Article  CAS  PubMed  Google Scholar 

  • Mink, J. W. (1996). The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50, 381–425.

    Article  CAS  PubMed  Google Scholar 

  • Monchi, O., Petrides, M., Petre, V., Worsley, K., & Dagher, A. (2001). Wisconsin card sorting revisited: Distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. Journal of Neuroscience, 21(19), 7733–7741.

    Article  CAS  PubMed  Google Scholar 

  • Monetta, L., & Pell, M. D. (2007). Effects of verbal working memory deficits on metaphor comprehension in patients with Parkinson’s disease. Brain and Language, 101(1), 80–89.

    Article  PubMed  Google Scholar 

  • Moretti, R., Bava, A., Torre, P., Antonello, R. M., Zorzon, M., Zivadinov, R., & Cazzato, G. (2001). Bilingual aphasia and subcortical-cortical lesions. Perceptual and Motor Skills, 92(3 Pt 1), 803–814.

  • Moro, A., Tettamanti, M., Perani, D., Donati, C., Cappa, S. F., & Fazio, F. (2001). Syntax and the brain: disentangling grammar by selective anomalies. NeuroImage, 13, 110–118.

    Article  CAS  PubMed  Google Scholar 

  • Nadeau, S. E., & Crosson, B. (1997). Subcortical aphasia. Brain and Language, 58, 355–402.

    Article  CAS  PubMed  Google Scholar 

  • Nambu, A. (2008). Seven problems on the basal ganglia. Current Opinion in Neurobiology, 18(6), 595–604.

  • Nimchinsky, E., Vogt, B., Morrison, J., & Hof, P. (1995). Spindle neurons of the human anterior cingulate cortex. The Journal of Comparative Neurology, 355, 27–37.

    Article  CAS  PubMed  Google Scholar 

  • Obeso, I., Wilkinson, L., Casabona, E., Bringas, M. L., Alvarez, M., Alvarez, L., & Jahanshahi, M. (2011). Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson’s disease. Experimental Brain Research, 212(3), 371–384.

    Article  PubMed  Google Scholar 

  • O’Reilly, R. C. (2006). Biologically based computational models of high-level cognition. Science, 314(5796), 91–94.

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2), 283–328.

    Article  PubMed  Google Scholar 

  • Pauli, W. M., O’Reilly, R. C., Yarkoni, T., & Wager, T. D. (2016). Regional specialization within the human striatum for diverse psychological functions. Proceedings of the National Academy of Sciences of the United States of America, 113(7), 1907–1912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Packard, M.G., & Knowlton, B.J. (2002). Learning and memory functions of the basal ganglia. Annual Reviews in Neuroscience, 25, 563–593.

  • Parsons, T. D., Rogers, S. A., Braaten, A. J., Woods, S. P., & Troster, A. I. (2006). Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson's disease: A meta-analysis. Lancet Neurology, 5, 578-588.

  • Phillips, L., Litcofsky, K.A., Pelster, M., Gelfand, M., Ullman, M.T., & Charles, P.D. (2012). Subthalamic nucleus deep brain stimulation impacts language in early Parkinson’s disease. PLoS One, 7, e42829.

  • Postuma, R. B., & Dagher, A. (2006). Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cerebral Cortex, 16(10), 1508–1521.

    Article  PubMed  Google Scholar 

  • Price, A. L. (2006). Explicit category learning in Parkinson’s disease: deficits related to impaired rule generation and selection processes. Neuropsychology, 20(2), 249–257.

    Article  PubMed  Google Scholar 

  • Progovac, L., Rakhlin, N., Angell, W., Liddane, R., Tang, L., & Ofen, N. (2018a). Neural correlates of syntax and proto-syntax: Evolutionary dimension. Frontiers in Psychology, 9, 2415.

    Article  PubMed  PubMed Central  Google Scholar 

  • Progovac, L., Rakhlin, N., Angell, W., Liddane, R., Tang, L., & Ofen, N. (2018b). Diversity of grammars and their diverging evolutionary and processing paths: evidence from functional MRI study of Serbian. Frontiers in Psychology, 9, 278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Provost, J. S., Hanganu, A., & Monchi, O. (2015). Neuroimaging studies of the striatum in cognition Part I: healthy individuals. Frontiers in Systems Neuroscience, 9, 140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ripolles, P., Marco-Pallares, J., Hielscher, U., Mestres-Misse, A., Tempelmann, C., Heinze, H., et al. (2014). The role of reward in word learning and its implications for language acquisition. Current Biology, 24, 2606–2611.

    Article  CAS  PubMed  Google Scholar 

  • Ripollés, P., Marco-Pallarés, J., Alicart, H., Tempelmann, C., Rodríguez-Fornells, A., & Noesselt, T. (2016). Intrinsic monitoring of learning success facilitates memory encoding via the activation of the SN/VTA-Hippocampal loop. eLife5, e17441.

  • Ripollés, P., Ferreri, L., Mas-Herrero, E., Alicart, H., Gómez-Andrés, A., Marco-Pallares, J., Antonijoan, R.M., Noesselt, T., Valle, M., Riba, J., & Rodriguez-Fornells, A. (2018). Intrinsically regulated learning is modulated by synaptic dopamine signaling. eLife7, e38113

  • Rodd, J. M., Davis, M. H., & Johnsrude, I. S. (2005). The neural mechanisms of speech comprehension: fMRI studies of semantic ambiguity. Cerebral Cortex, 15(8), 1261–1269.

  • Rodriguez-Fornells, A., Cunillera, T., Mestres-Misse, A., & de Diego-Balaguer, R. (2009). Neurophysiological mechanisms involved in language learning in adults. Philosophical Transactions of the Royal Society B-Biological Sciences, 364, 3711–3735.

    Article  PubMed Central  Google Scholar 

  • Sambin, S., Teichmann, M., de Diego Balaguer, R., Giavazzi, M., Sportiche, D., Schlenker, P., & Bachoud-Levi, A. (2012). The role of the striatum in sentence processing: Disentangling syntax from working memory in Huntington’s disease. Neuropsychologia, 50, 2625–2635.

    Article  PubMed  Google Scholar 

  • Schroeder, U., Kuehler, A., Haslinger, B., Erhard, P., Fogel, W., Tronnier, V. M., Lange, K. W., Boecker, H., & Ceballos-Baumann, A. O. (2002). Subthalamic nucleus stimulation affects striato-anterior cingulate cortex circuit in a response conflict task: a PET study. Brain, 125, 1995–2004.

  • Schroeder, U., Kuehler, A., Lange, K. W., Haslinger, B., Tronnier, V. M., Krause, M., Pfister, R., Boecker, H., & Ceballos-Baumann, A. O. (2003). Subthalamic nucleus stimulation affects a frontotemporal network: a PET study. Annals of Neurology, 54(4), 445–450.

  • Scimeca, J. M., & Badre, D. (2012). Striatal contributions to declarative memory retrieval. Neuron, 75(3), 380–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeley W. W. (2019). The Salience Network: A Neural System for Perceiving and Responding to Homeostatic Demands. The Journal of Neuroscience, 39(50), 9878–9882.

  • Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27, 2349–2356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seger, C. A., & Cincotta, C. M. (2005). The roles of the caudate nucleus in human classification learning. The Journal of Neuroscience, 25(11), 2941–2951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shellshear, L., MacDonald, A. D., Mahoney, J., Finch, E., McMahon, K., Silburn, P., et al. (2015). Levodopa enhances explicit new-word learning in healthy adults: a preliminary study. Human Psychopharmacology, 30(5), 341–349.

    Article  CAS  PubMed  Google Scholar 

  • Simard, F., Monetta, L., Nagano-Saito, A., & Monchi, O. (2013). A new lexical card-sorting task for studying fronto-striatal contribution to processing language rules. Brain and Language, 125(3), 295–306.

    Article  CAS  PubMed  Google Scholar 

  • Simonyan, K., Herscovitch, P., & Horwitz, B. (2013). Speech-induced striatal dopamine release is left lateralized and coupled to functional striatal circuits in healthy humans: a combined PET, fMRI and DTI study. NeuroImage, 70, 21–32.

    Article  CAS  PubMed  Google Scholar 

  • Sliwinska, M. W., Violante, I. R., Wise, R. J. S., Leech, R., Devlin, J. T., Geranmayeh, F., & Hampshire, A. (2017). Stimulating Multiple-Demand Cortex Enhances Vocabulary Learning. The Journal of Neuroscience, 37(32), 7606–7618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snijders, T. M., Petersson, K. M., & Hagoort, P. (2010). Effective connectivity of cortical and subcortical regions during unification of sentence structure. NeuroImage, 52, 1633–1644.

    Article  PubMed  Google Scholar 

  • Stocco, A. (2018). A Biologically Plausible Action Selection System for Cognitive Architectures: Implications of Basal Ganglia Anatomy for Learning and Decision-Making Models. Cognitive Science, 42(2), 457–490.

    Article  PubMed  Google Scholar 

  • Stockert, A., Wawrzyniak, M., Klingbeil, J., Wrede, K., Kümmerer, D., Hartwigsen, G., et al. (2020). Dynamics of language reorganization after left temporo-parietal and frontal stroke. Brain, 143(3), 844–861. https://doi.org/10.1093/brain/awaa023.

    Article  PubMed  Google Scholar 

  • Szalisznyo, K., Silverstein, D., Teichmann, M., Duffau, H., & Smits, A. (2017). Cortico-striatal language pathways dynamically adjust for syntactic complexity: A computational study. Brain and Language, 164, 53–62.

    Article  PubMed  Google Scholar 

  • Takashima, A., Bakker, I., van Hell, J. G., Janzen, G., & McQueen, J. M. (2014). Richness of information about novel words influences how episodic and semantic memory networks interact during lexicalization. NeuroImage, 84, 265–278.

    Article  PubMed  Google Scholar 

  • Tagarelli, K. M., Shattuck, K. F., Turkeltaub, P. E., & Ullman, M. T. (2019). Language learning in the adult brain: A neuro-anatomical meta-analysis of lexical and grammatical learning. NeuroImage, 193, 178–200.

    Article  PubMed  Google Scholar 

  • Teichmann, M., Rosso, C., Martini, J., Bloch, I., Brugieres, P., Duffau, H., et al. (2015). A cortical-subcortical syntax pathway linking Broca’s area and the striatum. Human Brain Mapping, 36(6), 2270–2283. https://doi.org/10.1002/hbm.22769.

    Article  PubMed  PubMed Central  Google Scholar 

  • Teichmann, M., Gaura, V., Demonet, J., Supiot, F., Delliaux, M., Verny, C., et al. (2008). Language processing within the striatum: Evidence from a PET correlation study in Huntington’s disease. Brain, 131, 1046–1056.

    Article  PubMed  Google Scholar 

  • Tettamanti, M., Moro, A., Messa, C., Moresco, R. M., Rizzo, G., Carpinelli, A., et al. (2005). Basal ganglia and language: phonology modulates dopaminergic release. NeuroReport, 16, 397–401.

    Article  PubMed  Google Scholar 

  • Tomasi, D., & Volkow, N. D. (2012). Language network: segregation, laterality and connectivity. Molecular Psychiatry, 17(8), 759.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, H. E., Almaghyuli, A., Noonan, K. A., Barak, O., Lambon Ralph, M. A., & Jefferies, E. (2018). The contribution of executive control to semantic cognition: Convergent evidence from semantic aphasia and executive dysfunction. Journal of Neuropsychology, 12(2), 312–340.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tinaz, S., Schendan, H. E., & Stern, C. E. (2008). Fronto-striatal deficit in Parkinson’s disease during semantic event sequencing. Neurobiology of Aging, 29(3), 397–407.

    Article  PubMed  Google Scholar 

  • Ullman, M.T. (2001). The declarative/procedural model of lexicon and grammar. Journal of Psycholinguistic Research, 30, 37–69.

  • Ullman, M. T., Pancheva, R., Love, T., Yee, E., Swinney, D., & Hickok, C. (2005). Neural correlates of lexicon and grammar: Evidence from the production, reading, and judgment of inflection in aphasia. Brain and Language, 93, 185–238.

    Article  PubMed  Google Scholar 

  • van Holstein, M., Froböse, M. I., O’Shea, J., Aarts, E., & Cools, R. (2018). Controlling striatal function via anterior frontal cortex stimulation. Scientific reports, 8(1), 3312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Heuvel, M. P., Bullmore, E. T., & Sporns, O. (2016). Comparative Connectomics. Trends in Cognitive Sciences, 20(5), 345–361.

  • van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. Journal of Neuroscience, 31(44), 15775–15786.

    Article  PubMed  CAS  Google Scholar 

  • van Heuven, W. J., Schriefers, H., Dijkstra, T., & Hagoort, P. (2008). Language conflict in the bilingual brain. Cerebral Cortex, 18(11), 2706–2716.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verstynen, T. D., Badre, D., Jarbo, K., & Schneider, W. (2012). Microstructural organizational patterns in the human corticostriatal system. Journal of Neurophysiology, 107(11), 2984–2995.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallesch, C. W. (1997). Symptomatology of subcortical aphasia. Journal of Neurolinguistics, 10(4), 267–275.

    Article  Google Scholar 

  • Wallesch, C.W., & Pagagno, C. (1988). Subcortical aphasia. In: Rose FC, Whurr R, Wyke MA (eds) Aphasia. Whurr Publishers, London, pp 256–287.

  • Wiesendanger, R., & Wiesendanger, M. (1985). The thalamic connections with medial area 6 (supplementary motor cortex) in the monkey (Macaca fascicularis). Experimental Brain Research, 59(1), 91–104.

    Article  CAS  PubMed  Google Scholar 

  • Ye, Z., Kutas, M., St George, M., Sereno, M. I., Ling, F., & Munte, T. F. (2012). Rearranging the world: Neural network supporting the processing of temporal connectives. NeuroImage, 59, 3662–3667.

    Article  PubMed  Google Scholar 

  • Ye, Z., Mestres-Missé, A., Rodriguez-Fornells, A., & Münte, T. F. (2011). Two distinct neural networks support the mapping of meaning to a novel word. Human Brain Mapping, 32(7), 1081–1090.

    Article  PubMed  Google Scholar 

  • Zempleni, M. Z., Renken, R., Hoeks, J. C., Hoogduin, J. M., & Stowe, L. A. (2007). Semantic ambiguity processing in sentence context: Evidence from event-related fMRI. Neuroimage, 34(3), 1270-1279.

  • Zou, L., Ding, G., Abutalebi, J., et al. (2012). Structural plasticity of the left caudate in bimodal bilinguals. Cortex, 48, 1197–1206.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Copland.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Copland, D.A., Brownsett, S., Iyer, K. et al. Corticostriatal Regulation of Language Functions. Neuropsychol Rev 31, 472–494 (2021). https://doi.org/10.1007/s11065-021-09481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-021-09481-9

Keywords

Navigation