Skip to main content
Log in

Cytosolic HMGB1 Mediates Autophagy Activation in an Emulsified Isoflurane Anesthesia Cell Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Inhalation anesthetic isoflurane may cause an increased risk of cognitive impairment. Previous studies have indicated that this cognitive decline is associated with neuroinflammation mediated by high mobility group box 1 (HMGB1). HMGB1 is released from cells and acts as a damage-associated molecule in neurodegenerative diseases. However, the effect of intracellular HMGB1 during emulsified isoflurane (EI) exposure is poorly understood. The purpose of this study was to investigate the effect of autophagy on neuroprotection, evaluate variation of HMGB1, and determine its role in autophagic flux after EI exposure in vitro. We observed that EI decreased cell viability in a concentration-dependent manner, accompanied by an increase in autophagic flux. EI exposure also elevates the HMGB1 level in cytoplasm. Further, cytosolic HMGB1 was necessary for autophagy by perturbing the beclin1-Bcl-2 interaction. Most importantly, autophagy induction by rapamycin alleviated EI-provoked cell injury, and HMGB1 knockdown induced autophagy inhibition, which exacerbated cell damage. Based on these findings, we propose that autophagic flux is sustained and upregulated in response to EI exposure by increased cytosolic HMGB1, and that autophagy activation serves as a protective mechanism against EI-induced cytotoxicity. Thus, the complex roles of HMGB1 make it pivotal in reducing EI-induced neuronal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bianchi SL, Tran T, Liu C, Lin S, Li Y, Keller JM, Eckenhoff RG, Eckenhoff MF (2008) Brain and behavior changes in 12-month-old Tg2576 and nontransgenic mice exposed to anesthetics. Neurobiol Aging 29(7):1002–1010. https://doi.org/10.1016/j.neurobiolaging.2007.02.009

    Article  CAS  Google Scholar 

  2. Zhang Y, Xu Z, Wang H, Dong Y, Shi HN, Culley DJ, Crosby G, Marcantonio ER, Tanzi RE, Xie Z (2012) Anesthetics isoflurane and desflurane differently affect mitochondrial function, learning, and memory. Ann Neurol 71(5):687–698. https://doi.org/10.1002/ana.23536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ge HW, Hu WW, Ma LL, Kong FJ (2015) Endoplasmic reticulum stress pathway mediates isoflurane-induced neuroapoptosis and cognitive impairments in aged rats. Physiol Behav 151:16–23. https://doi.org/10.1016/j.physbeh.2015.07.008

    Article  CAS  PubMed  Google Scholar 

  4. Lin D, Zuo Z (2011) Isoflurane induces hippocampal cell injury and cognitive impairments in adult rats. Neuropharmacology 61(8):1354–1359. https://doi.org/10.1016/j.neuropharm.2011.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen X, Dong Y, Xu Z, Wang H, Miao C, Soriano SG, Sun D, Baxter MG, Zhang Y, Xie Z (2013) Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology 118(3):502–515. https://doi.org/10.1097/ALN.0b013e3182834d77

    Article  CAS  PubMed  Google Scholar 

  6. Andersson U, Tracey KJ (2011) HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol 29:139–162. https://doi.org/10.1146/annurev-immunol-030409-101323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fang P, Schachner M, Shen YQ (2012) HMGB1 in development and diseases of the central nervous system. Mol Neurobiol 45(3):499–506. https://doi.org/10.1007/s12035-012-8264-y

    Article  CAS  PubMed  Google Scholar 

  8. Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ 3rd, Lotze MT, Tang D (2014) HMGB1 in health and disease. Mol Asp Med 40:1–116. https://doi.org/10.1016/j.mam.2014.05.001

    Article  CAS  Google Scholar 

  9. Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A (2008) HMGB1: endogenous danger signaling. Mol Med 14(7–8):476–484. https://doi.org/10.2119/2008-00034.Klune

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20(3):460–473. https://doi.org/10.1089/ars.2013.5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tooze SA, Schiavo G (2008) Liaisons dangereuses: autophagy, neuronal survival and neurodegeneration. Curr Opin Neurobiol 18(5):504–515. https://doi.org/10.1016/j.conb.2008.09.015

    Article  CAS  PubMed  Google Scholar 

  12. Harris HE, Andersson U, Pisetsky DS (2012) HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol 8(4):195–202. https://doi.org/10.1038/nrrheum.2011.222

    Article  CAS  PubMed  Google Scholar 

  13. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5(4):331–342. https://doi.org/10.1038/nri1594

    Article  CAS  PubMed  Google Scholar 

  14. Terrando N, Yang T, Wang X, Fang J, Cao M, Andersson U, Erlandsson HH, Ouyang W, Tong J (2016) Systemic HMGB1 neutralization prevents postoperative neurocognitive dysfunction in aged rats. Front Immunol 7:441. https://doi.org/10.3389/fimmu.2016.00441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen XH, Chen DT, Huang XM, Chen YH, Pan JH, Zheng XC, Zeng WA (2018) Dexmedetomidine protects against chemical hypoxia-induced neurotoxicity in differentiated PC12 cells via inhibition of NADPH oxidase 2-mediated oxidative stress. Neurotox Res 35(1):139–149. https://doi.org/10.1007/s12640-018-9938-7

    Article  CAS  Google Scholar 

  16. Pan X, Yan D, Wang D, Wu X, Zhao W, Lu Q, Yan H (2017) Mitochondrion-mediated apoptosis induced by acrylamide is regulated by a balance between Nrf2 antioxidant and MAPK signaling pathways in PC12 cells. Mol Neurobiol 54(6):4781–4794. https://doi.org/10.1007/s12035-016-0021-1

    Article  CAS  PubMed  Google Scholar 

  17. Kimura S, Fujita N, Noda T, Yoshimori T (2009) Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods Enzymol 452:1–12. https://doi.org/10.1016/s0076-6879(08)03601-x

    Article  CAS  PubMed  Google Scholar 

  18. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614. https://doi.org/10.1083/jcb.200507002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3(5):452–460

    Article  CAS  PubMed  Google Scholar 

  20. Porter K, Nallathambi J, Lin Y, Liton PB (2013) Lysosomal basification and decreased autophagic flux in oxidatively stressed trabecular meshwork cells: implications for glaucoma pathogenesis. Autophagy 9(4):581–594. https://doi.org/10.4161/auto.23568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang YP, Hu LF, Zheng HF, Mao CJ, Hu WD, Xiong KP, Wang F, Liu CF (2013) Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol Sin 34(5):625–635. https://doi.org/10.1038/aps.2013.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu Y, Wu X, Dong Y, Xu Z, Zhang Y, Xie Z (2010) Anesthetic sevoflurane causes neurotoxicity differently in neonatal naive and Alzheimer disease transgenic mice. Anesthesiology 112(6):1404–1416. https://doi.org/10.1097/ALN.0b013e3181d94de1

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L, Zhang J, Yang L, Dong Y, Zhang Y, Xie Z (2013) Isoflurane and sevoflurane increase interleukin-6 levels through the nuclear factor-kappa B pathway in neuroglioma cells. Br J Anaesth 110(Suppl 1):i82–i91. https://doi.org/10.1093/bja/aet115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC, Kroemer G (2008) To die or not to die: that is the autophagic question. Curr Mol Med 8(2):78–91

    Article  CAS  PubMed  Google Scholar 

  25. Carloni S, Buonocore G, Balduini W (2008) Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 32(3):329–339. https://doi.org/10.1016/j.nbd.2008.07.022

    Article  PubMed  Google Scholar 

  26. Martinez-Vicente M (2015) Autophagy in neurodegenerative diseases: from pathogenic dysfunction to therapeutic modulation. Semin Cell Dev Biol 40:115–126. https://doi.org/10.1016/j.semcdb.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  27. Chen G, Ke Z, Xu M, Liao M, Wang X, Qi Y, Zhang T, Frank JA, Bower KA, Shi X, Luo J (2012) Autophagy is a protective response to ethanol neurotoxicity. Autophagy 8(11):1577–1589. https://doi.org/10.4161/auto.21376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiong J, Kong Q, Dai L, Ma H, Cao X, Liu L, Ding Z (2017) Autophagy activated by tuberin/mTOR/p70S6K suppression is a protective mechanism against local anaesthetics neurotoxicity. J Cell Mol Med 21(3):579–587. https://doi.org/10.1111/jcmm.13003

    Article  CAS  PubMed  Google Scholar 

  29. Komita M, Jin H, Aoe T (2013) The effect of endoplasmic reticulum stress on neurotoxicity caused by inhaled anesthetics. Anesth Analg 117(5):1197–1204. https://doi.org/10.1213/ANE.0b013e3182a74773

    Article  CAS  PubMed  Google Scholar 

  30. Li G, Yu B (2014) Elevation of protective autophagy as a potential way for preventing developmental neurotoxicity of general anesthetics. Med Hypotheses 82(2):177–180. https://doi.org/10.1016/j.mehy.2013.11.032

    Article  CAS  PubMed  Google Scholar 

  31. Kong ZH, Chen X, Hua HP, Liang L, Liu LJ (2017) The oral pretreatment of glycyrrhizin prevents surgery-induced cognitive impairment in aged mice by reducing neuroinflammation and alzheimer’s-related pathology via HMGB1 inhibition. J Mol Neurosci 63(3–4):385–395. https://doi.org/10.1007/s12031-017-0989-7

    Article  CAS  PubMed  Google Scholar 

  32. Wang W, Chen X, Zhang J, Zhao Y, Li S, Tan L, Gao J, Fang X, Luo A (2016) Glycyrrhizin attenuates isoflurane-induced cognitive deficits in neonatal rats via its anti-inflammatory activity. Neuroscience 316:328–336. https://doi.org/10.1016/j.neuroscience.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  33. Zhu X, Messer JS, Wang Y, Lin F, Cham CM, Chang J, Billiar TR, Lotze MT, Boone DL, Chang EB (2015) Cytosolic HMGB1 controls the cellular autophagy/apoptosis checkpoint during inflammation. J Clin Investig 125(3):1098–1110. https://doi.org/10.1172/jci76344

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kornblit B, Munthe-Fog L, Madsen HO, Strom J, Vindelov L, Garred P (2008) Association of HMGB1 polymorphisms with outcome in patients with systemic inflammatory response syndrome. Crit Care 12(3):R83. https://doi.org/10.1186/cc6935

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ 3rd, Lotze MT (2010) Endogenous HMGB1 regulates autophagy. J Cell Biol 190(5):881–892. https://doi.org/10.1083/jcb.200911078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang K, Huang J, Xie W, Huang L, Zhong C, Chen Z (2016) Beclin1 and HMGB1 ameliorate the alpha-synuclein-mediated autophagy inhibition in PC12 cells. Diagn Pathol 11:15. https://doi.org/10.1186/s13000-016-0459-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guan Y, Li Y, Zhao G, Li Y (2018) HMGB1 promotes the starvation-induced autophagic degradation of alpha-synuclein in SH-SY5Y cells Atg 5-dependently. Life Sci 202:1–10. https://doi.org/10.1016/j.lfs.2018.03.031

    Article  CAS  PubMed  Google Scholar 

  38. Erlich S, Shohami E, Pinkas-Kramarski R (2006) Neurodegeneration induces upregulation of Beclin 1. Autophagy 2(1):49–51

    Article  CAS  PubMed  Google Scholar 

  39. Marquez RT, Xu L (2012) Bcl-2:Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res 2(2):214–221

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Huebener P, Gwak GY, Pradere JP, Quinzii CM, Friedman R, Lin CS, Trent CM, Mederacke I, Zhao E, Dapito DH, Lin Y, Goldberg IJ, Czaja MJ, Schwabe RF (2014) High-mobility group box 1 is dispensable for autophagy, mitochondrial quality control, and organ function in vivo. Cell Metab 19(3):539–547. https://doi.org/10.1016/j.cmet.2014.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Shumei Ma at Jilin University for helping with experimental platform. We would like to thank Editage (http://www.editage.com) for English language editing.

Funding

This work was supported by Natural Science Foundation of Jilin Province (Grant No. 3T1158303430). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-qing Zhao.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Rz., Li, T. & Zhao, Gq. Cytosolic HMGB1 Mediates Autophagy Activation in an Emulsified Isoflurane Anesthesia Cell Model. Neurochem Res 44, 1090–1100 (2019). https://doi.org/10.1007/s11064-019-02740-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02740-5

Keywords

Navigation