Skip to main content

Advertisement

Log in

Characterization of genomic alterations in primary central nervous system lymphomas

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Primary central nervous system lymphoma (PCNSL) is a non-Hodgkin lymphoma that affects the central nervous system (CNS). Although previous studies have reported the most common mutated genes in PCNSL, including MYD88 and CD79b, our understanding of genetic characterizations in primary CNS lymphomas is limited. The aim of this study was to perform a retrospective analysis investigating the most frequent mutation types, and their frequency, in PCNSL.

Methods

Fifteen patients with a diagnosis of PCNSL from our institution were analyzed for mutations in 406 genes and rearrangements in 31 genes by next generation sequencing (NGS).

Results

Missense mutations were identified as the most common mutation type (32%) followed by frame shift mutations (23%). The highest mutation rate was reported in the MYD88 (33.3%), CDKN2A/B (33.3%), and TP53 (26.7%) genes. Intermediate tumor mutation burden (TMB) and high TMB was detected in 13.3% and 26.7% of PCNSL, respectively. The most frequent gene rearrangement involved the IGH-BCL6 genes (20%).

Conclusions

This study shows the most common genetic alterations in PCNSL as determined by a commercial next generation sequencing assay. MYD88 and CD79b are frequently mutated in PCNSL, IGH-BCL6 is the most frequent gene rearrangement and approximately 1/4 of cases show a high TMB. Mutations in multiple genes, in addition to high TMB and gene rearrangements, highlights the complex molecular heterogeneity of PCNSL. Knowledge about genetic alterations in PCNSL can inform the development of novel targets for diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Li S, Young KH, Medeiros LJ (2018) Diffuse large B-cell lymphoma. Pathology 50:74–87. https://doi.org/10.1016/j.pathol.2017.09.006

    Article  PubMed  Google Scholar 

  2. Rosenwald A, Wright G, Chan WC et al (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346:1937–1947. https://doi.org/10.1056/NEJMoa012914

    Article  PubMed  Google Scholar 

  3. Fukumura K, Kawazu M, Kojima S et al (2016) Genomic characterization of primary central nervous system lymphoma. Acta Neuropathol 131:865–875. https://doi.org/10.1007/s00401-016-1536-2

    Article  CAS  PubMed  Google Scholar 

  4. Diamond C, Taylor TH, Aboumrad T, Anton Culver H (2006) Changes in acquired immunodeficiency syndrome-related non-Hodgkin lymphoma in the era of highly active antiretroviral therapy. Cancer 106:128–135. https://doi.org/10.1002/cncr.21562

    Article  CAS  PubMed  Google Scholar 

  5. Besson C, Goubar A, Gabarre J et al (2001) Changes in AIDS-related lymphoma since the era of highly active antiretroviral therapy. Blood 98:2339–2344

    Article  CAS  PubMed  Google Scholar 

  6. Shiels MS, Pfeiffer RM, Besson C et al (2016) Trends in primary central nervous system lymphoma incidence and survival in the U.S. Br J Haematol 174:417–424. https://doi.org/10.1111/bjh.14073

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gavrilovic IT, Hormigo A, Yahalom J et al (2006) Long-term follow-up of high-dose methotrexate-based therapy with and without whole brain irradiation for newly diagnosed primary CNS lymphoma. J Clin Oncol 24:4570–4574. https://doi.org/10.1200/JCO.2006.06.6910

    Article  CAS  PubMed  Google Scholar 

  8. Nayak L, Hedvat C, Rosenblum MK et al (2011) Late relapse in primary central nervous system lymphoma: clonal persistence. Neuro-oncology 13:525–529. https://doi.org/10.1093/neuonc/nor014

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zheng M, Perry AM, Bierman P et al (2017) Frequency of MYD88 and CD79B mutations, and MGMT methylation in primary central nervous system diffuse large B-cell lymphoma. Neuropathology 37:509–516. https://doi.org/10.1111/neup.12405

    Article  CAS  PubMed  Google Scholar 

  10. Yamada S, Ishida Y, Matsuno A, Yamazaki K (2015) Primary diffuse large B-cell lymphomas of central nervous system exhibit remarkably high prevalence of oncogenic MYD88 and CD79B mutations. Leuk Lymphoma 56:2141–2145. https://doi.org/10.3109/10428194.2014.979413

    Article  CAS  PubMed  Google Scholar 

  11. Nakamura T, Tateishi K, Niwa T et al (2016) Recurrent mutations of CD79B and MYD88 are the hallmark of primary central nervous system lymphomas. Neuropathol Appl Neurobiol 42:279–290. https://doi.org/10.1111/nan.12259

    Article  CAS  PubMed  Google Scholar 

  12. Ngo VN, Young RM, Schmitz R et al (2011) Oncogenically active MYD88 mutations in human lymphoma. Nature 470:115–119. https://doi.org/10.1038/nature09671

    Article  CAS  PubMed  Google Scholar 

  13. Lim K-H, Yang Y, Staudt LM (2012) Pathogenetic importance and therapeutic implications of NF-κB in lymphoid malignancies. Immunol Rev 246:359–378. https://doi.org/10.1111/j.1600-065X.2012.01105.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fitzgerald KA, Palsson-McDermott EM, Bowie AG et al (2001) Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413:78–83. https://doi.org/10.1038/35092578

    Article  CAS  PubMed  Google Scholar 

  15. Montesinos-Rongen M, Godlewska E, Brunn A et al (2011) Activating L265P mutations of the MYD88 gene are common in primary central nervous system lymphoma. Acta Neuropathol 122:791–792. https://doi.org/10.1007/s00401-011-0891-2

    Article  PubMed  Google Scholar 

  16. Braggio E, Van Wier S, Ojha J et al (2015) Genome-wide analysis uncovers novel recurrent alterations in primary central nervous system lymphomas. Clin Cancer Res 21:3986–3994. https://doi.org/10.1158/1078-0432.CCR-14-2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vater I, Montesinos-Rongen M, Schlesner M et al (2015) The mutational pattern of primary lymphoma of the central nervous system determined by whole-exome sequencing. Leukemia 29:677–685. https://doi.org/10.1038/leu.2014.264

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez-Aguilar A, Idbaih A, Boisselier B et al (2012) Recurrent mutations of MYD88 and TBL1XR1 in primary central nervous system lymphomas. Clin Cancer Res 18:5203–5211. https://doi.org/10.1158/1078-0432.CCR-12-0845

    Article  CAS  PubMed  Google Scholar 

  19. Ostrom QT, Gittleman H, Liao P et al (2017) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro-oncology 19:v1–v88. https://doi.org/10.1093/neuonc/nox158

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lu S, Gao Q, Yu J et al (2016) Utility of dynamic contrast-enhanced magnetic resonance imaging for differentiating glioblastoma, primary central nervous system lymphoma and brain metastatic tumor. Eur J Radiol 85:1722–1727. https://doi.org/10.1016/j.ejrad.2016.07.005

    Article  PubMed  Google Scholar 

  21. Wang K, Sanchez-Martin M, Wang X et al (2017) Patient-derived xenotransplants can recapitulate the genetic driver landscape of acute leukemias. Leukemia 31:151–158. https://doi.org/10.1038/leu.2016.166

    Article  CAS  PubMed  Google Scholar 

  22. Rosenberg JE, Hoffman-Censits J, Powles T et al (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387:1909–1920. https://doi.org/10.1016/S0140-6736(16)00561-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goodman AM, Kato S, Bazhenova L et al (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16:2598–2608. https://doi.org/10.1158/1535-7163.MCT-17-0386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hans CP, Weisenburger DD, Greiner TC et al (2004) Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103:275–282. https://doi.org/10.1182/blood-2003-05-1545

    Article  CAS  PubMed  Google Scholar 

  26. Lee J-H, Jeong H, Choi J-W et al (2017) Clinicopathologic significance of MYD88 L265P mutation in diffuse large B-cell lymphoma: a meta-analysis. Sci Rep 7:659. https://doi.org/10.1038/s41598-017-01998-5

    Article  CAS  Google Scholar 

  27. Kraan W, Horlings HM, van Keimpema M et al (2013) High prevalence of oncogenic MYD88 and CD79B mutations in diffuse large B-cell lymphomas presenting at immune-privileged sites. Blood Cancer J 3:e139–e139. https://doi.org/10.1038/bcj.2013.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Treon SP, Cao Y, Xu L et al (2014) Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood 123:2791–2796. https://doi.org/10.1182/blood-2014-01-550905

    Article  CAS  PubMed  Google Scholar 

  29. Poulain S, Boyle EM, Tricot S et al (2015) Absence of CXCR4 mutations but high incidence of double mutant in CD79A/B and MYD88 in primary central nervous system lymphoma. Br J Haematol 170:285–287. https://doi.org/10.1111/bjh.13293

    Article  CAS  PubMed  Google Scholar 

  30. Severson E, Vergilio J-A, Gay L et al (2017) PATH-20. Comprehensive genomic profiling comparing primary CNS lymphoma to systemic diffuse large B cell lymphoma reveals biomarkers indicating potential benefit from immune checkpoint inhibitors. Neuro-oncology 19:vi175–vi175. https://doi.org/10.1093/neuonc/nox168.711

    Article  PubMed Central  Google Scholar 

  31. Domanska UM, Kruizinga RC, Nagengast WB et al (2013) A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer 49:219–230. https://doi.org/10.1016/j.ejca.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  32. Cao Y, Hunter ZR, Liu X et al (2015) The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s Macroglobulinemia. Leukemia 29:169–176. https://doi.org/10.1038/leu.2014.187

    Article  CAS  PubMed  Google Scholar 

  33. Cao Y, Hunter ZR, Liu X et al (2015) CXCR4 WHIM-like frameshift and nonsense mutations promote ibrutinib resistance but do not supplant MYD88(L265P) -directed survival signalling in Waldenström macroglobulinaemia cells. Br J Haematol 168:701–707. https://doi.org/10.1111/bjh.13200

    Article  CAS  PubMed  Google Scholar 

  34. Pusic I, DiPersio JF (2010) Update on clinical experience with AMD3100, an SDF-1/CXCL12-CXCR4 inhibitor, in mobilization of hematopoietic stem and progenitor cells. Curr Opin Hematol 17:319–326. https://doi.org/10.1097/MOH.0b013e328338b7d5

    Article  CAS  PubMed  Google Scholar 

  35. McDermott DH, Lopez J, Deng F et al (2011) AMD3100 is a potent antagonist at CXCR4(R334X), a hyperfunctional mutant chemokine receptor and cause of WHIM syndrome. J Cell Mol Med 15:2071–2081. https://doi.org/10.1111/j.1582-4934.2010.01210.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martínez-Trillos A, Pinyol M, Navarro A et al (2014) Mutations in TLR/MYD88 pathway identify a subset of young chronic lymphocytic leukemia patients with favorable outcome. Blood 123:3790–3796. https://doi.org/10.1182/blood-2013-12-543306

    Article  CAS  PubMed  Google Scholar 

  37. Hattori K, Sakata-Yanagimoto M, Suehara Y et al (2018) Clinical significance of disease-specific MYD88 mutations in circulating DNA in primary central nervous system lymphoma. Cancer Sci 109:225–230. https://doi.org/10.1111/cas.13450

    Article  CAS  PubMed  Google Scholar 

  38. Treon SP, Xu L, Hunter Z (2015) MYD88 mutations and response to ibrutinib in Waldenström’s macroglobulinemia. N Engl J Med 373:584–586. https://doi.org/10.1056/NEJMc1506192

    Article  CAS  PubMed  Google Scholar 

  39. Wilson WH, Young RM, Schmitz R et al (2015) Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat Med 21:922–926. https://doi.org/10.1038/nm.3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hiemcke-Jiwa LS, Minnema MC, Radersma-van Loon JH et al (2017) The use of droplet digital PCR in liquid biopsies: a highly sensitive technique for MYD88 p.(L265P) detection in cerebrospinal fluid. Hematol Oncol 21:E7. https://doi.org/10.1002/hon.2489

    Article  CAS  Google Scholar 

  41. Bruno A, Boisselier B, Labreche K et al (2014) Mutational analysis of primary central nervous system lymphoma. Oncotarget 5:5065–5075. https://doi.org/10.18632/oncotarget.2080

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chapuy B, Roemer MGM, Stewart C et al (2016) Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 127:869–881. https://doi.org/10.1182/blood-2015-10-673236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Choi J-W, Kim Y, Lee J-H, Kim Y-S (2013) MYD88 expression and L265P mutation in diffuse large B-cell lymphoma. Hum Pathol 44:1375–1381. https://doi.org/10.1016/j.humpath.2012.10.026

    Article  CAS  PubMed  Google Scholar 

  44. Takano S, Hattori K, Ishikawa E et al (2018) MyD88 mutation in elderly predicts poor prognosis in primary central nervous system lymphoma: multi-institutional analysis. World Neurosurg 112:e69–e73. https://doi.org/10.1016/j.wneu.2017.12.028

    Article  PubMed  Google Scholar 

  45. Baur AS, Shaw P, Burri N et al (1999) Frequent methylation silencing of p15(INK4b) (MTS2) and p16(INK4a) (MTS1) in B-cell and T-cell lymphomas. Blood 94:1773–1781

    CAS  PubMed  Google Scholar 

  46. Guney S, Jardin F, Bertrand P et al (2012) Several mechanisms lead to the inactivation of the CDKN2A (P16), P14ARF, or CDKN2B (P15) genes in the GCB and ABC molecular DLBCL subtypes. Genes Chromosomes Cancer 51:858–867. https://doi.org/10.1002/gcc.21970

    Article  CAS  PubMed  Google Scholar 

  47. Quelle DE, Zindy F, Ashmun RA, Sherr CJ (1995) Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83:993–1000

    Article  CAS  PubMed  Google Scholar 

  48. Sharpless NE (2005) INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res 576:22–38. https://doi.org/10.1016/j.mrfmmm.2004.08.021

    Article  CAS  PubMed  Google Scholar 

  49. Roussel MF (1999) The INK4 family of cell cycle inhibitors in cancer. Oncogene 18:5311–5317. https://doi.org/10.1038/sj.onc.1202998

    Article  CAS  PubMed  Google Scholar 

  50. Dickson MA (2014) Molecular pathways: CDK4 inhibitors for cancer therapy. Clin Cancer Res 20:3379–3383. https://doi.org/10.1158/1078-0432.CCR-13-1551

    Article  CAS  PubMed  Google Scholar 

  51. DeMichele A, Clark AS, Tan KS et al (2015) CDK 4/6 inhibitor palbociclib (PD0332991) in Rb + advanced breast cancer: phase II activity, safety, and predictive biomarker assessment. Clin Cancer Res 21:995–1001. https://doi.org/10.1158/1078-0432.CCR-14-2258

    Article  CAS  PubMed  Google Scholar 

  52. Finn RS, Crown JP, Lang I et al (2015) The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 16:25–35. https://doi.org/10.1016/S1470-2045(14)71159-3

    Article  CAS  PubMed  Google Scholar 

  53. Infante JR, Cassier PA, Gerecitano JF et al (2016) A phase I study of the cyclin-dependent kinase 4/6 inhibitor ribociclib (LEE011) in patients with advanced solid tumors and lymphomas. Clin Cancer Res 22:5696–5705. https://doi.org/10.1158/1078-0432.CCR-16-1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Johnson DB, Dahlman KH, Knol J et al (2014) Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel. Oncologist 19:616–622. https://doi.org/10.1634/theoncologist.2014-0011

    Article  PubMed  PubMed Central  Google Scholar 

  55. SHERR CJ, BESTEN den BERTWISTLED W, et al (2005) p53-dependent and -independent functions of the arf tumor suppressor. Cold Spring Harb Symp Quant Biol 70:129–137. https://doi.org/10.1101/sqb.2005.70.004

    Article  CAS  PubMed  Google Scholar 

  56. Ozenne P, Eymin B, Brambilla E, Gazzeri S (2010) The ARF tumor suppressor: structure, functions and status in cancer. Int J Cancer 127:2239–2247. https://doi.org/10.1002/ijc.25511

    Article  CAS  PubMed  Google Scholar 

  57. Xu-Monette ZY, Wu L, Visco C et al (2012) Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL rituximab-CHOP Consortium Program Study. Blood 120:3986–3996. https://doi.org/10.1182/blood-2012-05-433334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Birkbak NJ, Kochupurakkal B, Izarzugaza JMG et al (2013) Tumor mutation burden forecasts outcome in ovarian cancer with BRCA1 or BRCA2 mutations. PLoS ONE 8:e80023. https://doi.org/10.1371/journal.pone.0080023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Peters S, Creelan B, Hellmann MD et al (2017) Abstract CT082: impact of tumor mutation burden on the efficacy of first-line nivolumab in stage iv or recurrent non-small cell lung cancer: an exploratory analysis of CheckMate 026. Cancer Res 77:CT082–CT082. https://doi.org/10.1158/1538-7445.AM2017-CT082

    Article  Google Scholar 

  60. Roberts SA, Gordenin DA (2014) Hypermutation in human cancer genomes: footprints and mechanisms. Nat Rev Cancer 14:786–800. https://doi.org/10.1038/nrc3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128. https://doi.org/10.1126/science.aaa1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pfeifer GP, Denissenko MF, Olivier M et al (2002) Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21:7435–7451. https://doi.org/10.1038/sj.onc.1205803

    Article  CAS  PubMed  Google Scholar 

  63. Pfeifer GP, You Y-H, Besaratinia A (2005) Mutations induced by ultraviolet light. Mutat Res 571:19–31. https://doi.org/10.1016/j.mrfmmm.2004.06.057

    Article  CAS  PubMed  Google Scholar 

  64. Chalmers ZR, Connelly CF, Fabrizio D et al (2017) Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9:34. https://doi.org/10.1186/s13073-017-0424-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Karim LA, Wang P, de Guzman J et al (2017) Abstract 3724: PDL1 protein expression and tumor mutation burden in hematologic malignancies: correlation with Hodgkin and high grade lymphoma. Cancer Res 77:3724–3724. https://doi.org/10.1158/1538-7445.AM2017-3724

    Article  Google Scholar 

  66. Montesinos-Rongen M, Siebert R, Deckert M (2009) Primary lymphoma of the central nervous system: just DLBCL or not? Blood 113:7–10. https://doi.org/10.1182/blood-2008-04-149005

    Article  CAS  PubMed  Google Scholar 

  67. Cady FM, O’Neill BP, Law ME et al (2008) Del(6)(q22) and BCL6 rearrangements in primary CNS lymphoma are indicators of an aggressive clinical course. J Clin Oncol 26:4814–4819. https://doi.org/10.1200/JCO.2008.16.1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Montesinos-Rongen M, Akasaka T, Zühlke-Jenisch R et al (2003) Molecular characterization of BCL6 breakpoints in primary diffuse large B-cell lymphomas of the central nervous system identifies GAPD as novel translocation partner. Brain Pathol 13:534–538

    Article  CAS  PubMed  Google Scholar 

  69. Montesinos-Rongen M, Zühlke-Jenisch R, Gesk S et al (2002) Interphase cytogenetic analysis of lymphoma-associated chromosomal breakpoints in primary diffuse large B-cell lymphomas of the central nervous system. J Neuropathol Exp Neurol 61:926–933

    Article  CAS  PubMed  Google Scholar 

  70. Kramer MH, Hermans J, Wijburg E et al (1998) Clinical relevance of BCL2, BCL6, and MYC rearrangements in diffuse large B-cell lymphoma. Blood 92:3152–3162

    CAS  PubMed  Google Scholar 

  71. Akyurek N, Uner A, Benekli M, Barista I (2012) Prognostic significance of MYC, BCL2, and BCL6 rearrangements in patients with diffuse large B-cell lymphoma treated with cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab. Cancer 118:4173–4183. https://doi.org/10.1002/cncr.27396

    Article  CAS  PubMed  Google Scholar 

  72. Horn H, Ziepert M, Becher C et al (2013) MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood 121:2253–2263. https://doi.org/10.1182/blood-2012-06-435842

    Article  CAS  PubMed  Google Scholar 

  73. Neelapu SS, Locke FL, Bartlett NL et al (2017) Axicabtagene Ciloleucel (AXI-CEL; KTE-C19) in patients with refractory aggressive non-hodgkin lymphomas (NHL): primary results of the pivotal trial ZUMA-1. Hematol Oncol 35:28–28. https://doi.org/10.1002/hon.2437_7

    Article  Google Scholar 

  74. Locke FL, Neelapu SS, Bartlett NL et al (2017) Abstract CT019: primary results from ZUMA-1: a pivotal trial of axicabtagene ciloleucel (axicel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma (NHL). Cancer Res 77:CT019–CT019. https://doi.org/10.1158/1538-7445.AM2017-CT019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshua Esquenazi or Leomar Y. Ballester.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informal consent

For this type of study formal consent is not required.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1 (DOCX 1948 KB)

Supplementary Table 1 (DOCX 284 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorofchian, S., El-Achi, H., Yan, Y. et al. Characterization of genomic alterations in primary central nervous system lymphomas. J Neurooncol 140, 509–517 (2018). https://doi.org/10.1007/s11060-018-2990-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-2990-6

Keywords

Navigation