Skip to main content
Log in

The predictive potential of hyponatremia for glioblastoma patient survival

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Glioblastoma is a devastating malignancy with a dismal survival rate. Currently, there are limited prognostic markers of glioblastoma including IDH1, ATRX, MGMT, PTEN, EGFRvIII, and others. Although these biomarkers for tumor prognosis are available, a surgical biopsy must be performed for these analyses, which has morbidity involved. A non-invasive and readily available biomarker is sought after which provides clinicians prognostic information. Sodium is an electrolyte that is easily and quickly obtained through analysis of a patient’s serum. Hyponatremia has been shown to have a predictive and negative prognostic indication in multiple cancer types, but the role of glioblastoma patients’ serum sodium at the time of diagnosis in predicting glioblastoma patient survival has not been determined. We assessed whether hyponatremia at the time of glioblastoma diagnosis correlates to patient survival and show that in our cohort of 200 glioblastoma patients, sodium, at any level, did not significantly correlate to glioblastoma survival, unlike what is seen in multiple other cancer types. We further demonstrate that inducing hyponatremia in an orthotopic murine model of glioblastoma has no effects on tumor progression and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  2. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507. https://doi.org/10.1056/NEJMra0708126

    Article  CAS  PubMed  Google Scholar 

  3. Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466. https://doi.org/10.1016/S1470-2045(09)70025-7

    Article  CAS  PubMed  Google Scholar 

  4. Verhaak RGW, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173. https://doi.org/10.1016/j.ccr.2006.02.019

    Article  CAS  PubMed  Google Scholar 

  6. van den Bent MJ, Gao Y, Kerkhof M et al (2015) Changes in the EGFR amplification and EGFRvIII expression between paired primary and recurrent glioblastomas. Neuro Oncol 17:935–941. https://doi.org/10.1093/neuonc/nov013

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu F, Hon GC, Villa GR et al (2015) EGFR mutation promotes glioblastoma through epigenome and transcription factor network remodeling. Mol Cell 60:307–318. https://doi.org/10.1016/j.molcel.2015.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu J, Li Z, Wang J et al (2014) Combined PTEN mutation and protein expression associate with overall and disease-free survival of glioblastoma patients. Transl Oncol 7:196–205.e1. https://doi.org/10.1016/j.tranon.2014.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ueki K, Ono Y, Henson JW et al (1996) CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res 56:150–153

    CAS  PubMed  Google Scholar 

  10. Chaurasia A, Park S-H, Seo J-W, Park C-K (2016) Immunohistochemical analysis of ATRX, IDH1 and p53 in glioblastoma and their correlations with patient survival. J Korean Med Sci 31:1208. https://doi.org/10.3346/jkms.2016.31.8.1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437. https://doi.org/10.1016/j.ccr.2012.08.024

    Article  CAS  PubMed  Google Scholar 

  12. Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19:764–772. https://doi.org/10.1158/1078-0432.CCR-12-3002

    Article  CAS  PubMed  Google Scholar 

  13. Kleihues P, Ohgaki H (1999) Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol 1:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berardi R, Caramanti M, Fiordoliva I et al (2015) Hyponatraemia is a predictor of clinical outcome for malignant pleural mesothelioma. Support Care Cancer 23:621–626. https://doi.org/10.1007/s00520-014-2398-6

    Article  CAS  PubMed  Google Scholar 

  15. Jeppesen AN, Jensen HK, Donskov F et al (2010) Hyponatremia as a prognostic and predictive factor in metastatic renal cell carcinoma. Br J Cancer 102:867–872. https://doi.org/10.1038/sj.bjc.6605563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gandhi L, Johnson BE (2006) Paraneoplastic syndromes associated with small cell lung cancer. J Natl Compr Canc Netw 4:631–638

    Article  PubMed  Google Scholar 

  17. Huo T-I, Lin H-C, Hsia C-Y et al (2008) The MELD-Na is an independent short- and long-term prognostic predictor for hepatocellular carcinoma: a prospective survey. Dig Liver Dis 40:882–889. https://doi.org/10.1016/j.dld.2008.01.015

    Article  CAS  PubMed  Google Scholar 

  18. Kim HS, Yi SY, Jun HJ et al (2007) Clinical outcome of gastric cancer patients with bone marrow metastases. Oncology 73:192–197. https://doi.org/10.1159/000127386

    Article  PubMed  Google Scholar 

  19. Tiseo M, Buti S, Boni L et al (2014) Prognostic role of hyponatremia in 564 small cell lung cancer patients treated with topotecan. Lung Cancer 86:91–95. https://doi.org/10.1016/j.lungcan.2014.07.022

    Article  PubMed  Google Scholar 

  20. Kawashima A, Tsujimura A, Takayama H et al (2012) Impact of hyponatremia on survival of patients with metastatic renal cell carcinoma treated with molecular targeted therapy. Int J Urol 19:1050–1057. https://doi.org/10.1111/j.1442-2042.2012.03115.x

    Article  CAS  PubMed  Google Scholar 

  21. Schutz FAB, Xie W, Donskov F et al (2014) The impact of low serum sodium on treatment outcome of targeted therapy in metastatic renal cell carcinoma: results from the international metastatic renal cell cancer database consortium. Eur Urol 65:723–730. https://doi.org/10.1016/j.eururo.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  22. Thajudeen B, Salahudeen AK (2016) Role of tolvaptan in the management of hyponatremia in patients with lung and other cancers: current data and future perspectives. Cancer Manag Res 8:105–114. https://doi.org/10.2147/CMAR.S90169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Canelas HM, De Jorge FB, Pereira WC, Sallum J (1968) Biochemistry of cerebral tumours: sodium, potassium, calcium, phosphorus, magnesium, copper and sulphur contents of astrocytomata, medulloblastomata and glioblastomata multiforme. J Neurochem 15:1455–1461

    Article  CAS  PubMed  Google Scholar 

  24. Lefranc F, Mijatovic T, Kondo Y et al (2008) Targeting the alpha 1 subunit of the sodium pump to combat glioblastoma cells. Neurosurgery 62:211–212. https://doi.org/10.1227/01.NEU.0000311080.43024.0E

    Article  PubMed  Google Scholar 

  25. Joshi AD, Parsons D, Velculescu VE, Riggins GJ (2011) Sodium ion channel mutations in glioblastoma patients correlate with shorter survival. Mol Cancer 10:17. https://doi.org/10.1186/1476-4598-10-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Algharabil J, Kintner DB, Wang Q et al (2012) Inhibition of Na+-K+-2Cl cotransporter isoform 1 accelerates temozolomidemediated apoptosis in glioblastoma cancer cells. Cell Physiol Biochem 30:33–48. https://doi.org/10.1159/000339047

    Article  CAS  PubMed  Google Scholar 

  27. Huang X, Lei Z, Li X-P, El-Mallakh RS (2009) Response of sodium pump to ouabain challenge in human glioblastoma cells in culture. World J Biol Psychiatry 10:884–892. https://doi.org/10.1080/15622970902995620

    Article  PubMed  Google Scholar 

  28. Lefranc F, Kiss R (2008) The sodium pump alpha1 subunit as a potential target to combat apoptosis-resistant glioblastomas. Neoplasia 10:198–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lefranc F, Mijatovic T, Kiss R (2008) The sodium pump could constitute a new target to combat glioblastomas. Bull Cancer 95:271–281. https://doi.org/10.1684/bdc.2008.0597

    CAS  PubMed  Google Scholar 

  30. Madhankumar AB, Slagle-Webb B, Wang X et al (2009) Efficacy of interleukin-13 receptor-targeted liposomal doxorubicin in the intracranial brain tumor model. Mol Cancer Ther 8:648–654. https://doi.org/10.1158/1535-7163.MCT-08-0853

    Article  CAS  PubMed  Google Scholar 

  31. Zelano J, Halawa I, Clausen F, Kumlien E (2013) Hyponatremia augments kainic-acid induced status epilepticus in the mouse: a model for dysmetabolic status epilepticus. Epilepsy Res 106:29–34. https://doi.org/10.1016/j.eplepsyres.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  32. Yoshioka W, Kawaguchi T, Nishimura N et al (2016) Polyuria-associated hydronephrosis induced by xenobiotic chemical exposure in mice. Am J Physiol 311:F752–F762

    CAS  Google Scholar 

  33. Vajda Z, Pedersen M, Füchtbauer E-M et al (2002) Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc Natl Acad Sci USA 99:13131–13136. https://doi.org/10.1073/pnas.192457099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Betz AL, Keep RF, Beer ME, Ren X-D (1994) Blood-brain barrier permeability and brain concentration of sodium, potassium, and chloride during focal ischemia. J Cereb Blood Flow Metab 14:29–37. https://doi.org/10.1038/jcbfm.1994.5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver D. Mrowczynski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Data availability statement The datasets generated during and/or analysed during the current study are not publicly available due to the security of our patient data but are available from the corresponding author on reasonable request. All datasets are kept in REDCap (Research Electronic Data Capture), a secure web application for building and managing online surveys and databases. REDcap is HIPAA compliant, all data is stored on a secure server, and encrypted, access to the database requires user authentication with password, and data access is based on individual’s role in the project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mrowczynski, O.D., Bourcier, A.J., Liao, J. et al. The predictive potential of hyponatremia for glioblastoma patient survival. J Neurooncol 138, 99–104 (2018). https://doi.org/10.1007/s11060-018-2774-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-2774-z

Keywords

Navigation