Skip to main content
Log in

Mebendazole and radiation in combination increase survival through anticancer mechanisms in an intracranial rodent model of malignant meningioma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Meningiomas are a frequent tumor of the central nervous system. Although mostly benign, approximately 5% present as atypical or malignant tumors. Treatments for atypical meningiomas include gross total resection and radiotherapy, but about 33% of patients have recurrent tumors, sometimes as a higher grade. Recently, the brain penetrant anthelmintic drug, mebendazole, has shown promise as an anticancer agent in rodent models of glioblastoma and medulloblastoma.

Methods

The half maximal inhibitory concentration (IC50) effect on colony formation, cell proliferation, and caspase-3/7 markers of apoptosis of mebendazole with and without radiation was measured in vitro. Mice intracranially implanted with KT21MG1 human meningioma were administered mebendazole alone or in combination with radiation. Survival benefit was evaluated, while tumors were investigated by immunohistochemical staining for apoptosis, cell proliferation, and vascular density.

Results

In vitro experiments on meningioma cell lines showed the IC50 for mebendazole in the range of 0.26–0.42 µM. Mebendazole alone induced cytotoxicity, however the combination had a greater reduction in colony formation and resulted in higher levels of cleaved caspase-3. The in vivo study showed both, mebendazole alone and the combination, to have a survival benefit with an increase in apoptosis, and decreases in tumor cell and vascular proliferation.

Conclusion

These preclinical findings indicate that mebendazole alone or in combination with radiation can be considered for the treatment of malignant meningioma. The mechanism of action for this combination may include an increase in apoptosis, a reduction in proliferation and angiogenesis, or a combination of these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ostrom QT et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the united states in 2008–2012. Neuro Oncol 17(Suppl 4):iv1–iv62

    Article  Google Scholar 

  2. Bi WL et al (2016) Meningioma genomics: diagnostic, prognostic, and therapeutic applications. Front Surg 3:40

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kessler RA et al (2017) Metastatic atypical and anaplastic meningioma: a case series and review of the literature. World Neurosurg 101:47–56

    Article  PubMed  Google Scholar 

  4. Moazzam AA, Wagle N, Zada G (2013) Recent developments in chemotherapy for meningiomas: a review. Neurosurg Focus 35(6):E18

    Article  PubMed  Google Scholar 

  5. Chamberlain MC (2013) IFN-alpha for recurrent surgery- and radiation-refractory high-grade meningioma: a retrospective case series. CNS Oncol 2(3):227–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chamberlain MC, Glantz MJ, Fadul CE (2007) Recurrent meningioma: salvage therapy with long-acting somatostatin analogue. Neurol 69(10):969–973

    Article  CAS  Google Scholar 

  7. Lou E et al (2012) Bevacizumab therapy for adults with recurrent/progressive meningioma: a retrospective series. J Neurooncol 109(1):63–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nygren P et al (2013) Repositioning of the anthelmintic drug mebendazole for the treatment for colon cancer. J Cancer Res Clin Oncol 139(12):2133–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nygren P, Larsson R (2014) Drug repositioning from bench to bedside: tumour remission by the antihelmintic drug mebendazole in refractory metastatic colon cancer. Acta Oncol 53(3):427–428

    Article  PubMed  Google Scholar 

  10. Sawanyawisuth K et al (2014) Effect of the antiparasitic drug mebendazole on cholangiocarcinoma growth. SE Asian J Trop Med Public Health 45(6):1264–1270

    Google Scholar 

  11. Chen HR et al (2016) A network based approach to drug repositioning identifies plausible candidates for breast cancer and prostate cancer. BMC Med Genomics 9(1):51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gillessen S et al (2016) Repurposing metformin as therapy for prostate cancer within the STAMPEDE trial platform. Eur Urol 70(6):906–908

    Article  PubMed  Google Scholar 

  13. Jahchan NS et al (2013) A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discov 3(12):1364–1377

    Article  CAS  PubMed  Google Scholar 

  14. McCarty TR, Turkeltaub JA, Hotez PJ (2014) Global progress towards eliminating gastrointestinal helminth infections. Curr Opin Gastroenterol 30(1):18–24

    Article  PubMed  Google Scholar 

  15. Vutova K et al (1999) Effect of mebendazole on human cystic echinococcosis: the role of dosage and treatment duration. Ann Trop Med Parasitol 93(4):357–365

    Article  CAS  PubMed  Google Scholar 

  16. El-On J (2003) Benzimidazole treatment of cystic echinococcosis. Acta Trop 85(2):243–252

    Article  CAS  PubMed  Google Scholar 

  17. Bai RY et al (2011) Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro Oncol 13(9):974–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Williamson T et al (2016) Mebendazole and a non-steroidal anti-inflammatory combine to reduce tumor initiation in a colon cancer preclinical model. Oncotarget 7(42):68571–68584

    Article  PubMed  PubMed Central  Google Scholar 

  19. Doudican N et al (2008) Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Mol Cancer Res 6(8):1308–1315

    Article  CAS  PubMed  Google Scholar 

  20. Sasaki J et al (2002) The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol Cancer Ther 1(13):1201–1209

    CAS  PubMed  Google Scholar 

  21. Bai RY et al (2015) Effective treatment of diverse medulloblastoma models with mebendazole and its impact on tumor angiogenesis. Neuro Oncol 17(4):545–554

    Article  CAS  PubMed  Google Scholar 

  22. Larsen AR et al (2015) Repurposing the antihelmintic mebendazole as a hedgehog inhibitor. Mol Cancer Ther 14(1):3–13

    Article  CAS  PubMed  Google Scholar 

  23. Bai RY et al (2015) Brain penetration and efficacy of different mebendazole polymorphs in a mouse brain tumor model. Clin Cancer Res 21(15):3462–3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buglione M et al (2014) Role of external beam radiotherapy in the treatment of relapsing meningioma. Med Oncol 31(3):866

    Article  CAS  PubMed  Google Scholar 

  25. Sun SQ et al (2014) Management of atypical cranial meningiomas, part 2: predictors of progression and the role of adjuvant radiation after subtotal resection. Neurosurg. 75(4):356–363. (discussion 363)

    Article  Google Scholar 

  26. Ho WS et al (2018) LB-100, a novel protein phosphatase 2A (PP2A) inhibitor, sensitizes malignant meningioma cells to the therapeutic effects of radiation. Cancer Lett 415:217–226

    Article  CAS  PubMed  Google Scholar 

  27. Rao Gogineni V et al (2010) Radiation-inducible silencing of uPA and uPAR in vitro and in vivo in meningioma. Int J Oncol 36(4):809–816

    PubMed  Google Scholar 

  28. Wilisch-Neumann A et al (2013) The integrin inhibitor cilengitide affects meningioma cell motility and invasion. Clin Cancer Res 19(19):5402–5412

    Article  CAS  PubMed  Google Scholar 

  29. Baia GS et al (2006) A genetic strategy to overcome the senescence of primary meningioma cell cultures. J Neurooncol 78(2):113–121

    Article  CAS  PubMed  Google Scholar 

  30. Baia GS et al (2012) Yes-associated protein 1 is activated and functions as an oncogene in meningiomas. Mol Cancer Res 10(7):904–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Striedinger K et al (2008) The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia 10(11):1204–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamashita AS et al (2014) Preclinical evaluation of the combination of mTOR and proteasome inhibitors with radiotherapy in malignant peripheral nerve sheath tumors. J Neurooncol 118(1):83–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hasegawa K et al (2006) Dual therapy of ovarian cancer using measles viruses expressing carcinoembryonic antigen and sodium iodide symporter. Clin Cancer Res 12(6):1868–1875

    Article  CAS  PubMed  Google Scholar 

  34. Baia GS et al (2008) An orthotopic skull base model of malignant meningioma. Brain Pathol 18(2):172–179

    Article  CAS  PubMed  Google Scholar 

  35. Wong J et al (2008) High-resolution, small animal radiation research platform with X-ray tomographic guidance capabilities. Int J Radiat Oncol Biol Phys 71(5):1591–1599

    Article  PubMed  PubMed Central  Google Scholar 

  36. Baluk P, McDonald DM (2008) Markers for microscopic imaging of lymphangiogenesis and angiogenesis. Ann N Y Acad Sci 1131:1–12

    Article  PubMed  Google Scholar 

  37. Gravina GL et al (2017) The novel CXCR4 antagonist, PRX177561, reduces tumor cell proliferation and accelerates cancer stem cell differentiation in glioblastoma preclinical models. Tumour Biol 39(6):1010428317695528

    Article  PubMed  Google Scholar 

  38. Lin CJ et al (2016) Preclinical effects of CRLX101, an investigational camptothecin-containing nanoparticle drug conjugate, on treating glioblastoma multiforme via apoptosis and antiangiogenesis. Oncotarget 7(27):42408–42421

    Article  PubMed  PubMed Central  Google Scholar 

  39. Karsy M et al (2016) Medical management of meningiomas: current status, failed treatments, and promising horizons. Neurosurg Clin N Am 27(2):249–260

    Article  PubMed  Google Scholar 

  40. Markowitz D et al (2017) Microtubule-targeting agents can sensitize cancer cells to ionizing radiation by an interphase-based mechanism. Onco Targets Ther 10:5633–5642

    Article  PubMed  PubMed Central  Google Scholar 

  41. Poruchynsky MS et al (2015) Microtubule-targeting agents augment the toxicity of DNA-damaging agents by disrupting intracellular trafficking of DNA repair proteins. Proc Natl Acad Sci USA 112(5):1571–1576

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by grants from the National Institutes of Health (R21CA195149 and RO1CA190223), generous gifts from Peter Jennison, Leonard and Phyllis Attman, and through support to GJR via the Irving J. Sherman M.D. Research Professorship.

Author information

Authors and Affiliations

Authors

Contributions

CGS performed all the experiments assisted by TW for animal experiments. CGS and GJR created the study design. GJR originated the study hypothesis.

Corresponding author

Correspondence to Gregory J. Riggins.

Ethics declarations

Conflict of interest

Dr. Riggins is a founder of and holds equity in Benizole Therapeutics PBC. The results of the study discussed in this publication could affect the value of Benizole. This arrangement has been reviewed and approved by the Johns Hopkins University in accordance with its conflict of interest policies. GJR has a financial interest in Benizole Therapeutics, PBC and in mebendazole related intellectual property managed by Johns Hopkins University.

Ethical approval

Rodent experiments were performed using a protocol approved by the Johns Hopkins University Institutional Animal Care and Use Committee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skibinski, C.G., Williamson, T. & Riggins, G.J. Mebendazole and radiation in combination increase survival through anticancer mechanisms in an intracranial rodent model of malignant meningioma. J Neurooncol 140, 529–538 (2018). https://doi.org/10.1007/s11060-018-03009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-03009-7

Keywords

Navigation