Skip to main content

Advertisement

Log in

Occupational exposure to metals and risk of meningioma: a multinational case-control study

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The aim of the study was to examine associations between occupational exposure to metals and meningioma risk in the international INTEROCC study. INTEROCC is a seven-country population-based case-control study including 1906 adult meningioma cases and 5565 population controls. Incident cases were recruited between 2000 and 2004. A detailed occupational history was completed and job titles were coded into standard international occupational classifications. Estimates of mean workday exposure to individual metals and to welding fumes were assigned based on a job-exposure-matrix. Adjusted odds ratios (ORs) and 95 % confidence intervals (CIs) were estimated using conditional logistic regression. Although more controls than cases were ever exposed to metals (14 vs. 11 %, respectively), cases had higher median cumulative exposure levels. The ORs for ever vs. never exposure to any metal and to individual metals were mostly greater than 1.0, with the strongest association for exposure to iron (OR 1.26, 95 % CI 1.0–1.58). In women, an increased OR of 1.70 (95 % CI 1.0–2.89) was seen for ever vs never exposure to iron (OR in men 1.19, 95 % CI 0.91–1.54), with positive trends in relation with both cumulative and duration of exposure. These results remained after consideration of other occupational metal or chemical co-exposures. In conclusion, an apparent positive association between occupational exposure to iron and meningioma risk was observed, particularly among women. Considering the fact that meningioma is a hormone dependent tumor, the hypothesis that an interaction between iron and estrogen metabolism may be a potential mechanism for a carcinogenic effect of iron should be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ostrom QT, Gittleman H, Farah P et al (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol 15:ii1–ii56

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sadetzki S, Chetrit A, Freedman L et al (2005) Long-term follow-up for brain tumor development after childhood exposure to ionizing radiation for tinea capitis. Radiat Res 163:424–432

    Article  CAS  PubMed  Google Scholar 

  3. Bondy M, Scheurer M, Malmer B et al (2008) Brain tumor epidemiology: consensus from the brain tumor epidemiology consortium (BTEC). Cancer 113:1953–1968

    Article  PubMed  PubMed Central  Google Scholar 

  4. Braganza MZ, Kitahara CM, Berrington de Gonzalez A et al (2012) Ionizing radiation and the risk of brain and central nervous system tumors: a systematic review. Neuro Oncol 14:1316–1324

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cowppli-Bony A, Bouvier G, Rue M et al (2011) Brain tumors and hormonal factors: review of the epidemiological literature. Cancer Causes Control 22:697–714

    Article  PubMed  Google Scholar 

  6. Perry A, Louis DN, Budka H, von Deimling A, Sahm F, Rushing EJ, Mawrin C, Claus EB, Loeffler J, Sadetzki S (2016) Meningioma. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO classification of tumors of the central nervous system, 4th edn. IARC Press, Lyon, pp 232–237

    Google Scholar 

  7. Polychronakis I, Dounias G, Makropoulous V et al (2013) Work-related leukemia: a systematic review. J Occup Med Toxicol 8:14

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hozo I, Miric D, Bojic L et al (2000) Liver angiocarcinoma and hemangiopericytoma after occupational exposure to vinyl chloride monomer. Environ Health Perspect 108:793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brown T, Slack R, Rushton L (2012) British Occupational Cancer Burden Study Group. Occupational cancer in Britain: urinary tract cancers: bladder and kidney. Br J Cancer 107(Suppl 1):S85–S91

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brown T, Darnton A, Fotunato L et al (2012) Occupational cancer in Britain: respiratory cancer sites: larynx, lung, and mesothelioma. Br J Cancer 107(Suppl 1):S56–S70

    Article  PubMed  PubMed Central  Google Scholar 

  11. d’Errico A, Pasian S, Baratti A et al (2009) A case-control study on occupational risk factors for sinonasal cancer. Occup Environ Med 66:448–455

    Article  PubMed  PubMed Central  Google Scholar 

  12. Menegoz F, Little J, Colonna M et al (2002) Contacts with animals and humans as risk factors for adult brain tumours. An international case-control study. Eur J Cancer 38:696–704

    Article  CAS  PubMed  Google Scholar 

  13. Rajamaran P, De Roos AJ, Stewart PA et al (2004) Occupation and risk of meningioma and acoustic neuroma in the United States. Am J Ind Med 45:395–407

    Article  Google Scholar 

  14. Samkange-Zeeb F, Schlehofer B, Schüz J et al (2010) Occupation and risk of glioma, meningioma and acoustic neuroma: results from a German case-control study (Interphone study group, Germany). Cancer Epidemiol 34:55–61

    Article  CAS  PubMed  Google Scholar 

  15. Cardis E, Richardson L, Deltour I et al (2007) The INTERPHONE study: design, epidemiological methods, and description of the study population. Eur J Epidemiol 22:647–664

    Article  PubMed  Google Scholar 

  16. McLean D, Fleming S, Turner MC et al (2014) Occupational solvent exposure and risk of meningioma: results from the INTEROCC multi-centre case-control study. Occup Environ Med 71:253–258

    Article  CAS  PubMed  Google Scholar 

  17. Van Tongeren M, Kincl L, Richardson L et al (2013) Assessing occupational exposure to chemicals in an international epidemiological study of brain tumors. Ann Occup Hyg 57:610–626

    Article  PubMed  PubMed Central  Google Scholar 

  18. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 100C (2012) “Arsenic, Metals, Fibres, and Dusts”. Retrieved 15 Feb, 2016, from http://monographs.iarc.fr/ENG/Monographs/vol100c/

  19. Landrigan PJ (1982) Occupational and community exposures to toxic metals: lead, cadmium, mercury and arsenic. West J Med 137:531–539

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Graham BEL (1985) Exposure to heavy metals in the workplace. J R Soc N Z 15:399–402

    Article  CAS  Google Scholar 

  21. Siew SS, Kauppinen T, Kyyrönen P, Heikkilä P, Pukkala E (2008) Exposure to iron and welding fumes and the risk of lung cancer. Scand J Work Environ Health 34:444–450

    Article  CAS  PubMed  Google Scholar 

  22. Summary of All Agents IARC (2015) Monographs of the evaluation of carcinogenic risks to humans. Retrieved 15 Feb, 2016, from http://monographs.iarc.fr/ENG/Classification/ClassificationsGroupOrder.pdf

  23. Cardis E, Armstrong BK, Bowman JD et al (2011) Risk of brain tumours in relation to estimated RF dose from mobile phones: results from five Interphone countries. Occup Environ Med 68:631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Turner MC, Benke G, Bowman J et al (2014) Occupational exposure to extremely low frequency magnetic fields and brain tumour risks in the INTEROCC study. Cancer Epidemiol Biomarkers Prev 23:1863–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. International Labour Office (1969) International Classification of Occupations, Revised Edition. International Labour Organization, Geneva

    Google Scholar 

  26. International Labour Office (1990) International Standard Classification of Occupations: ISCO-88. International Labour Office, Geneva

    Google Scholar 

  27. International Standard Industrial Classification of all Economic Activities (Revision 2) (1975). New York

  28. McLean D, van Tongeren M, Richardson L et al (2011) Evaluation of the quality and comparability of job coding across seven countries in the INTEROCC study. EPICOH 2011: 23rd International Conference on Epidemiology in Occupational Health. 7–9 September 2011. Oxford, UK: University of Oxford. Occup Environ Med 68:A61

    Article  Google Scholar 

  29. Lavoue J, Pintos J, Van Tongeren M et al (2012) Comparison of exposure estimates in the Finnish job-exposure matrix FINJEM with a JEM derived from expert assessments performed in Montreal. Occup Environ Med 69:465–471

    Article  CAS  PubMed  Google Scholar 

  30. Treiman D (1977) Occupational prestige in comparative perspective. Press A, New York

    Google Scholar 

  31. Rani A, Kumar A, Lal A et al (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24:378–399

    Article  CAS  PubMed  Google Scholar 

  32. Anderson RA (2000) Chromium in the prevention and control of diabetes. Diabetes Metab 26:22–27

    CAS  PubMed  Google Scholar 

  33. Andrews RK, Blakely RL, Zerner B (1988) Nickel in proteins and enzymes. In: Sigel H, Sigel A (eds) Metal ions in biological systems, Volume 23: nickel and its role in biology. Marcel Decker Inc, New York, pp 219–221

    Google Scholar 

  34. Heath JL, Weiss JM, Lavau CP et al (2013) Iron deprivation in cancer-potential therapeutic implications. Nutrients 5:2836–2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang X (2003) Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat Res 533:153–171

    Article  CAS  PubMed  Google Scholar 

  36. Rajaraman P, Schwartz BS, Rothman N et al (2005) Delta-aminolevulinic acid dehydratase polymorphism and risk of brain tumors in adults. Environ Health Perspect 113:1209–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Toyokuni S (2009) Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci 100:9–16

    Article  CAS  PubMed  Google Scholar 

  38. Fonseca-Nunes A, Jakszyn P, Agudo A (2014) Iron and cancer risk-a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomarkers Prev 23:12–31

    Article  CAS  PubMed  Google Scholar 

  39. Zacharski LR, Chow BK, Howes PS et al (2008) Decreased cancer risk after iron reduction in patients with peripheral arterial disease: results from a randomized trial. J Natl Cancer Inst 100:996–1002

    Article  CAS  PubMed  Google Scholar 

  40. Hayat MA (ed.) (2012) Tumors of the central nervous system, volume 7: meningiomas and schwannomas. Springer Science + Business Media B.V.

  41. Flint-Richter P, Mandelzweig L, Oberman B et al (2011) Possible interaction between ionizing radiation, smoking, and gender in the causation of meningioma. Neuro Oncol 13:345–352

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jian J, Pelle E, Huang X (2009) Iron and menopause: does increased iron affect the health of postmenopausal women? Antioxid Redox Signal 11:2939–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zacharski LR, Ornstein DL, Woloshin S et al (2000) Association of age, sex, and race with body iron stores in adults: analysis of NHANES III data. Am Heart J 140:98–104

    Article  CAS  PubMed  Google Scholar 

  44. Strayer DS, Rubin E (2014) Cell adaptation, cell injury, and cell death. In: Rubin E, Reisner HM (eds). Essentials of Rubin’s pathology, 6th edn. Wolters Kluwer/Lippincott Williams & Wikins, Baltimore, pp 1–24

    Google Scholar 

  45. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87

    Article  CAS  PubMed  Google Scholar 

  46. Wiemels J, Wrensch M, Claus EB (2010) Epidemiology and etiology of meningioma. J Neurooncol 99:307–314

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wise SS, Wise JP (2012) Chromium and genomic stability. Mutat Res 733:78–82

    Article  CAS  PubMed  Google Scholar 

  48. Khan FH, Ambreen K, Fatima G et al (2012) Assessment of health risks with reference to oxidative stress and DNA damage in chromium exposed population. Sci Total Environ 430:68–74

    Article  CAS  PubMed  Google Scholar 

  49. Coyle YM, Hynan LS, Euhus DM et al (2005) An ecological study of the association of environmental chemicals on breast cancer incidence in Texas. Breast Cancer Res Treat 92:107–114

    Article  CAS  PubMed  Google Scholar 

  50. Hill AB (1965) The environment and disease: association and causation. Proc R Soc Med 58:295–300

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Rodrigo Villegas of CREAL for conducting preliminary analyses of metal data, and Avital Jarus-Hakak (Israel), Louise Nadon (Canada), Hélène Tardy (France), Florence Samkange-Zeeb (Germany), and Anne Sleeuwenhoek (UK), who coded the occupations or assisted in the data clean-up. We are grateful to Mary McBride (Canada) and Drs. Bruce Armstrong (Australia), Maria Blettner (Germany), Alistair Woodward (New Zealand) and Patricia McKinney (UK) for the use of the occupational data from their INTERPHONE study centres for the INTEROCC project.

Funding

Michelle C. Turner was funded by a Government of Canada Banting Postdoctoral Fellowship. The INTEROCC study was funded by the National Institutes for Health (NIH) Grant No. 1R01CA124759 (PI E Cardis). Coding of the French occupational data was in part funded by AFSSET (Convention No. ST-2005-004). The INTERPHONE study was supported by funding from the European Fifth Framework Program, ‘Quality of Life and Management of Living Resources’ (contract 100 QLK4-CT-1999901563) and the International Union against Cancer (UICC). The UICC received funds for this purpose from the Mobile Manufacturers’ Forum and GSM Association. In Australia, funding was received from the Australian National Health and Medical Research Council (EME Grant 219129) with funds originally derived from mobile phone service license fees; a University of Sydney Medical Foundation Program; the Cancer Council NSW and The Cancer Council Victoria. In Canada funding was received from the Canadian Institutes of Health Research (project MOP-42525); the Canada Research Chair programme; the Guzzo-CRS Chair in Environment and Cancer; the Fonds de la recherche en santé du Québec; the Canadian Institutes of Health Research (CIHR), the latter including partial support from the Canadian Wireless Telecommunications Association; the NSERC Chair in Risk Science at the University of Ottawa. In France, funding was received by l’Association pour la Recherche sur le Cancer (ARC) (Contrat N85142) and three network operators (Orange, SFR, Bouygues Telecom). In Germany, funding was received from the German Mobile Phone Research Program (Deutsches Mobilfunkforschungsprogramm) of the German Federal Ministry for the Environment, Nuclear Safety, and Nature Protection; the Ministry for the Environment and Traffic of the state of Baden- Wurttemberg; the Ministry for the Environment of the state of North Rhine-Westphalia; the MAIFOR Program (Mainzer Forschungsforderungsprogramm) of the University of Mainz. In New Zealand, funding was provided by the Health Research Council, Hawkes Bay Medical Research Foundation, the Wellington Medical Research Foundation, the Waikato Medical Research Foundation and the Cancer Society of New Zealand. Additional funding for the UK study was received from the Mobile Telecommunications, Health and Research (MTHR) program, funding from the Health and Safety Executive, the Department of Health, the UK Network Operators (O2, Orange, T-Mobile, Vodafone, ‘3’) and the Scottish Executive. All industry funding was governed by contracts guaranteeing the complete scientific independence of the investigators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegal Sadetzki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 113 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadetzki, S., Chetrit, A., Turner, M.C. et al. Occupational exposure to metals and risk of meningioma: a multinational case-control study. J Neurooncol 130, 505–515 (2016). https://doi.org/10.1007/s11060-016-2244-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2244-4

Keywords

Navigation