Skip to main content

Advertisement

Log in

The role of neuropathology in the management of progressive glioblastoma

A systematic review and evidence-based clinical practice guideline

  • TOPIC REVIEW & CLINICAL GUIDELINES
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Question

1. What are the most important diagnostic considerations in reporting progressive glioblastoma?

Target population

These recommendations apply to adults with progressive glioblastoma

Recommendations

Level III

For patients who undergo biopsy or neurosurgical resection at the time of radiologic or clinical progression, it is recommended that the pathologist report the presence and extent of progressive neoplasm as well as the presence and extent of necrosis within the pathologic material examined.

Furthermore, to ensure the proper interpretation of progressive glioblastoma, it is recommended that the pathologist take into account the patient’s previous diagnosis and treatment, as well as the current clinical and neuroimaging features that have led to a second biopsy or resection.

Question

2. What techniques and ancillary studies are most useful in separating malignant progression from treatment effect?

Target population

These recommendations apply to adults with progressive glioblastoma

Recommendations

Level III

In the setting of prior radiation and chemotherapy, it is recommended to adhere to strict histologic criteria for microvascular proliferation and necrosis in order to establish a diagnosis of a glioblastoma.

Immunohistochemistry and genetic studies are selectively recommended for distinguishing neoplastic cells from atypical reactive cells in progressive glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Darefsky AS, King JT Jr, Dubrow R (2012) Adult glioblastoma multiforme survival in the temozolomide era: a population-based analysis of surveillance, epidemiology, and end results registries. Cancer 118(8):2163–2172

    Article  PubMed Central  PubMed  Google Scholar 

  2. Koshy M, Villano JL, Dolecek TA et al (2012) Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J Neurooncol 107(1):207–212

    Article  PubMed  Google Scholar 

  3. Easaw JC, Mason WP, Perry J et al (2011) Canadian recommendations for the treatment of recurrent or progressive glioblastoma multiforme. Current oncology (Toronto, Ont.) 18(3):e126–e136

    CAS  Google Scholar 

  4. Olson JJ, Fadul CE, Brat DJ, Mukundan S, Ryken TC (2009) Management of newly diagnosed glioblastoma: guidelines development, value and application. J Neurooncol 93(1):1–23

    Article  PubMed  Google Scholar 

  5. Olson JJ, Ryken T (2008) Guidelines for the treatment of newly diagnosed glioblastoma: introduction. J Neurooncol 89(3):255–258

    Article  PubMed  Google Scholar 

  6. Narang J, Jain R, Arbab AS et al (2011) Differentiating treatment-induced necrosis from recurrent/progressive brain tumor using nonmodel-based semiquantitative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion. Neuro Oncol 13(9):1037–1046

    Article  PubMed Central  PubMed  Google Scholar 

  7. Jain R, Narang J, Sundgren PM et al (2010) Treatment induced necrosis versus recurrent/progressing brain tumor: going beyond the boundaries of conventional morphologic imaging. J Neurooncol 100(1):17–29

    Article  PubMed  Google Scholar 

  8. Alexiou GA, Tsiouris S, Kyritsis AP, Voulgaris S, Argyropoulou MI, Fotopoulos AD (2009) Glioma recurrence versus radiation necrosis: accuracy of current imaging modalities. J Neurooncol 95(1):1–11

    Article  PubMed  Google Scholar 

  9. Burger PC, Scheithauer BW, Lee RR, O’Neill BP (1997) An interdisciplinary approach to avoid the overtreatment of patients with central nervous system lesions. Cancer 80(11):2040–2046

    Article  CAS  PubMed  Google Scholar 

  10. Burger PC, Nelson JS, Boyko OB (1998) Diagnostic synergy in radiology and surgical neuropathology: neuroimaging techniques and general interpretive guidelines. Arch Pathol Lab Med 122(7):609–619

    CAS  PubMed  Google Scholar 

  11. Burger PC, Nelson JS, Boyko OB (1998) Diagnostic synergy in radiology and surgical neuropathology: radiographic findings of specific pathologic entities. Arch Pathol Lab Med 122(7):620–632

    CAS  PubMed  Google Scholar 

  12. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst 97(16):1180–1184

    Article  CAS  PubMed  Google Scholar 

  13. Riley RD, Ridley G, Williams K, Altman DG, Hayden J, de Vet HC (2007) Prognosis research: toward evidence-based results and a Cochrane methods group. J Clin Epidemiol 60(8):863–865; author reply 865–866

    Google Scholar 

  14. Altman DG, Riley RD (2005) Primer: an evidence-based approach to prognostic markers. Nat Clin Pract Oncol 2(9):466–472

    Article  PubMed  Google Scholar 

  15. Walters BC (1998) Clinical practice parameter development in neurosurgery. In: Bean J (ed) Neurosurgery in transition: the socioeconomic transformation of neurological surgery. Williams and Wilkins, Baltimore, pp 99–111

    Google Scholar 

  16. Lai R, Chu R, Fraumeni M, Thabane L (2006) Quality of randomized controlled trials reporting in the primary treatment of brain tumors. J Clin Oncol 24(7):1136–1144

    Article  PubMed  Google Scholar 

  17. Moher D, Schulz KF, Altman DG (2001) The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomised trials. Lancet 357(9263):1191–1194

    Article  CAS  PubMed  Google Scholar 

  18. Bullock R, Chesnut RM, Clifton G et al (1996) Guidelines for the management of severe head injury. Brain Trauma Foundation. Eur J Emerg Med 3(2):109–127

    Article  CAS  PubMed  Google Scholar 

  19. Burger PC, Scheithauer BW (1994) Tumors of the central nervous system. Armed Forces Institute of Pathology, Washington

    Google Scholar 

  20. Burger PC, Scheithauer BW, Vogel FS (2002) Surgical pathology of the nervous system and its coverings, 4th edn. Churchill Livingstone, New York

    Google Scholar 

  21. Kleihues P, Cavenee WK (2000) Pathology and genetics of tumours of the nervous system. IARC Press, Lyon

    Google Scholar 

  22. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) WHO classification of tumours of the central nervous system, 4th edn. International Agency for Research, Lyon

    Google Scholar 

  23. Perry A, Brat DJ (2010) Practical surgical pathology: a diagnostic approach. Elsevier, Philadelphia

    Google Scholar 

  24. Brat DJ, Prayson RA, Ryken TC, Olson JJ (2008) Diagnosis of malignant glioma: role of neuropathology. J Neurooncol 89(3):287–311

    Article  PubMed  Google Scholar 

  25. Gupta M, Djalilvand A, Brat DJ (2005) Clarifying the diffuse gliomas: an update on the morphologic features and markers that discriminate oligodendroglioma from astrocytoma. Am J Clin Pathol 124(5):755–768

    Article  CAS  PubMed  Google Scholar 

  26. Miller CR, Dunham CP, Scheithauer BW, Perry A (2006) Significance of necrosis in grading of oligodendroglial neoplasms: a clinicopathologic and genetic study of newly diagnosed high-grade gliomas. J Clin Oncol 24(34):5419–5426

    Article  PubMed  Google Scholar 

  27. Sheline GE, Wara WM, Smith V (1980) Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 6(9):1215–1228

    Article  CAS  PubMed  Google Scholar 

  28. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9(5):453–461

    Article  PubMed  Google Scholar 

  29. Perry A, Schmidt RE (2006) Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol 111(3):197–212

    Article  CAS  PubMed  Google Scholar 

  30. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  31. Taal W, Brandsma D, de Bruin HG et al (2008) Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer 113(2):405–410

    Article  CAS  PubMed  Google Scholar 

  32. Brandes AA, Franceschi E, Tosoni A et al (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26(13):2192–2197

    Article  PubMed  Google Scholar 

  33. de Wit MC, de Bruin HG, Eijkenboom W, Sillevis Smitt PA, van den Bent MJ (2004) Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 63(3):535–537

    Article  PubMed  Google Scholar 

  34. Chakravarti A, Erkkinen MG, Nestler U et al (2006) Temozolomide-mediated radiation enhancement in glioblastoma: a report on underlying mechanisms. Clin Cancer Res Off J Am Assoc Cancer Res 12(15):4738–4746

    Article  CAS  Google Scholar 

  35. Chamberlain MC, Glantz MJ, Chalmers L, Van Horn A, Sloan AE (2007) Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol 82(1):81–83

    Article  PubMed  Google Scholar 

  36. Wong CS, Van der Kogel AJ (2004) Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol Interv 4(5):273–284

    Article  CAS  PubMed  Google Scholar 

  37. Brandes AA, Tosoni A, Spagnolli F et al (2008) Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol 10(3):361–367

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ruben JD, Dally M, Bailey M, Smith R, McLean CA, Fedele P (2006) Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys 65(2):499–508

    Article  PubMed  Google Scholar 

  39. Peterson K, Clark HB, Hall WA, Truwit CL (1995) Multifocal enhancing magnetic resonance imaging lesions following cranial irradiation. Ann Neurol 38(2):237–244

    Article  CAS  PubMed  Google Scholar 

  40. Brandes AA, Rigon A, Zampieri P et al (1998) Carboplatin and teniposide concurrent with radiotherapy in patients with glioblastoma multiforme: a phase II study. Cancer 82(2):355–361

    Article  CAS  PubMed  Google Scholar 

  41. Glantz MJ, Choy H, Kearns CM et al (1996) Phase I study of weekly outpatient paclitaxel and concurrent cranial irradiation in adults with astrocytomas. J Clin Oncol 14(2):600–609

    CAS  PubMed  Google Scholar 

  42. Levin VA, Yung WK, Bruner J et al (2002) Phase II study of accelerated fractionation radiation therapy with carboplatin followed by PCV chemotherapy for the treatment of anaplastic gliomas. Int J Radiat Oncol Biol Phys 53(1):58–66

    Article  CAS  PubMed  Google Scholar 

  43. Forsyth PA, Kelly PJ, Cascino TL et al (1995) Radiation necrosis or glioma recurrence: is computer-assisted stereotactic biopsy useful? J Neurosurg 82(3):436–444

    Article  CAS  PubMed  Google Scholar 

  44. Yoshii Y (2008) Pathological review of late cerebral radionecrosis. Brain Tumor Pathol 25(2):51–58

    Article  PubMed  Google Scholar 

  45. Burger PC, Mahley MS Jr, Dudka L, Vogel FS (1979) The morphologic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25 cases. Cancer 44(4):1256–1272

    Article  CAS  PubMed  Google Scholar 

  46. Schiffer D, Giordana MT, Paoletti P, Soffietti R, Tarenzi L (1980) Pathology of human malignant gliomas after radiation and chemotherapy. Acta Neurochir (Wien) 53(3–4):205–216

    Article  CAS  Google Scholar 

  47. Schiffer D, Chio A, Giordana MT et al (1990) Vascular response to irradiation in malignant gliomas. J Neurooncol 8(1):73–84

    Article  CAS  PubMed  Google Scholar 

  48. Schiffer D, Giordana MT, Soffietti R, Sciolla R (1982) Histological observations on the regrowth of malignant gliomas after radiotherapy and chemotherapy. Acta Neuropathol 58(4):291–299

    Article  CAS  PubMed  Google Scholar 

  49. Burger PC, Nelson JS (1997) Stereotactic brain biopsies: specimen preparation and evaluation. Arch Pathol Lab Med 121(5):477–480

    CAS  PubMed  Google Scholar 

  50. Burger PC, Vogel FS (1978) Frozen section interpretation in surgical neuropathology. II. Intraspinal lesions. Am J Surg Pathol 2(1):81–95

    Article  CAS  PubMed  Google Scholar 

  51. Burger PC (1985) Use of cytological preparations in the frozen section diagnosis of central nervous system neoplasia. Am J Surg Pathol 9(5):344–354

    Article  CAS  PubMed  Google Scholar 

  52. Ironside JW (1994) Update on central nervous system cytopathology. II. Brain smear technique. J Clin Pathol 47(8):683–688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Burger PC, Shibata T, Kleihues P (1986) The use of the monoclonal antibody Ki-67 in the identification of proliferating cells: application to surgical neuropathology. Am J Surg Pathol 10(9):611–617

    Article  CAS  PubMed  Google Scholar 

  54. Prayson RA (2002) Cell proliferation and tumors of the central nervous system, part II: radiolabeling, cytometric, and immunohistochemical techniques. J Neuropathol Exp Neurol 61(8):663–672

    PubMed  Google Scholar 

  55. Daumas-Duport C, Scheithauer B, O’Fallon J, Kelly P (1988) Grading of astrocytomas. A simple and reproducible method. Cancer 62(10):2152–2165

    Article  CAS  PubMed  Google Scholar 

  56. Brat DJ, Parisi JE, Kleinschmidt-DeMasters BK et al (2008) Surgical neuropathology update: a review of changes introduced by the WHO classification of tumours of the central nervous system, 4th edition. Arch Pathol Lab Med 132(6):993–1007

    PubMed  Google Scholar 

  57. Colodner KJ, Montana RA, Anthony DC, Folkerth RD, De Girolami U, Feany MB (2005) Proliferative potential of human astrocytes. J Neuropathol Exp Neurol 64(2):163–169

    PubMed  Google Scholar 

  58. Giannini C, Scheithauer BW, Burger PC et al (1999) Cellular proliferation in pilocytic and diffuse astrocytomas. J Neuropathol Exp Neurol 58(1):46–53

    Article  CAS  PubMed  Google Scholar 

  59. Deininger MH, Grote E, Wickboldt J, Meyermann R (2000) Distinct radiochemotherapy protocols differentially influence cellular proliferation and expression of p53 and Bcl-2 in glioblastoma multiforme relapses in vivo. J Neurooncol 48(2):121–129

    Article  CAS  PubMed  Google Scholar 

  60. Riemenschneider MJ, Jeuken JW, Wesseling P, Reifenberger G (2010) Molecular diagnostics of gliomas: state of the art. Acta Neuropathol 120(5):567–584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Hunter SB, Brat DJ, Olson JJ, Von Deimling A, Zhou W, Van Meir EG (2003) Alterations in molecular pathways of diffusely infiltrating glial neoplasms: application to tumor classification and anti-tumor therapy (Review). Int J Oncol 23(4):857–869

    CAS  PubMed  Google Scholar 

  62. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64(6):479–489

    CAS  PubMed  Google Scholar 

  63. Collins VP (2007) Mechanisms of disease: genetic predictors of response to treatment in brain tumors. Nat Clin Pract Oncol 4(6):362–374

    Article  CAS  PubMed  Google Scholar 

  64. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Aldape K, Burger PC, Perry A (2007) Clinicopathologic aspects of 1p/19q loss and the diagnosis of oligodendroglioma. Arch Pathol Lab Med 131(2):242–251

    CAS  PubMed  Google Scholar 

  66. Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, Collins VP (1994) Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol 145(5):1175–1190

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Perry A, Fuller CE, Banerjee R, Brat DJ, Scheithauer BW (2003) Ancillary FISH analysis for 1p and 19q status: preliminary observations in 287 gliomas and oligodendroglioma mimics. Front Biosci 8:a1–a9

    Article  CAS  PubMed  Google Scholar 

  68. McDonald JM, See SJ, Tremont IW et al (2005) The prognostic impact of histology and 1p/19q status in anaplastic oligodendroglial tumors. Cancer 104(7):1468–1477

    Article  CAS  PubMed  Google Scholar 

  69. Burger PC, Minn AY, Smith JS et al (2001) Losses of chromosomal arms 1p and 19q in the diagnosis of oligodendroglioma. A study of paraffin-embedded sections. Mod Pathol 14(9):842–853

    Article  CAS  PubMed  Google Scholar 

  70. Ueki K, Nishikawa R, Nakazato Y et al (2002) Correlation of histology and molecular genetic analysis of 1p, 19q, 10q, TP53, EGFR, CDK4, and CDKN2A in 91 astrocytic and oligodendroglial tumors. Clinical Cancer Res Off J Am Assoc Cancer Res 8(1):196–201

    CAS  Google Scholar 

  71. Nigro JM, Takahashi MA, Ginzinger DG et al (2001) Detection of 1p and 19q loss in oligodendroglioma by quantitative microsatellite analysis, a real-time quantitative polymerase chain reaction assay. Am J Pathol 158(4):1253–1262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Louis DN (1994) The p53 gene and protein in human brain tumors. J Neuropathol Exp Neurol 53:11–21

    Article  CAS  PubMed  Google Scholar 

  73. Yaziji H, Massarani-Wafai R, Gujrati M, Kuhns JG, Martin AW, Parker JC Jr (1996) Role of p53 immunohistochemistry in differentiating reactive gliosis from malignant astrocytic lesions. Am J Surg Pathol 20(9):1086–1090

    Article  CAS  PubMed  Google Scholar 

  74. Kurtkaya-Yapicier O, Scheithauer BW, Hebrink D, James CD (2002) p53 in nonneoplastic central nervous system lesions: an immunohistochemical and genetic sequencing study. Neurosurgery 51(5):1246–1254; discussion 1254–1255

    Google Scholar 

  75. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51(23 Pt 1):6304–6311

    CAS  PubMed  Google Scholar 

  76. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 89(16):7491–7495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Murphy M, Mabruk MJ, Lenane P et al (2002) Comparison of the expression of p53, p21, Bax and the induction of apoptosis between patients with basal cell carcinoma and normal controls in response to ultraviolet irradiation. J Clin Pathol 55(11):829–833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Murphy M, Mabruk MJ, Lenane P et al (2002) The expression of p53, p21, Bax and induction of apoptosis in normal volunteers in response to different doses of ultraviolet radiation. Br J Dermatol 147(1):110–117

    Article  CAS  PubMed  Google Scholar 

  79. Caspari T (2000) How to activate p53. Curr Biol 10(8):R315–R317

    Article  CAS  PubMed  Google Scholar 

  80. Schittenhelm J, Mittelbronn M, Nguyen TD, Meyermann R, Beschorner R (2008) WT1 expression distinguishes astrocytic tumor cells from normal and reactive astrocytes. Brain Pathol 18(3):344–353

    Article  PubMed  Google Scholar 

  81. Capper D, Sahm F, Hartmann C, Meyermann R, von Deimling A, Schittenhelm J (2010) Application of mutant IDH1 antibody to differentiate diffuse glioma from nonneoplastic central nervous system lesions and therapy-induced changes. Am J Surg Pathol 34(8):1199–1204

    Article  PubMed  Google Scholar 

  82. Parsons MJ, Patel P, Brat DJ, Colbert L, Vertino PM (2009) Silencing of TMS1/ASC promotes resistance to anoikis in breast epithelial cells. Cancer Res 69(5):1706–1711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Capper D, Weissert S, Balss J et al (2010) Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol 20(1):245–254

    Article  CAS  PubMed  Google Scholar 

  84. Horbinski C, Kofler J, Kelly LM, Murdoch GH, Nikiforova MN (2009) Diagnostic use of IDH1/2 mutation analysis in routine clinical testing of formalin-fixed, paraffin-embedded glioma tissues. J Neuropathol Exp Neurol 68(12):1319–1325

    Article  CAS  PubMed  Google Scholar 

  85. Camelo-Piragua S, Jansen M, Ganguly A, Kim JC, Louis DN, Nutt CL (2010) Mutant IDH1-specific immunohistochemistry distinguishes diffuse astrocytoma from astrocytosis. Acta Neuropathol 119(4):509–511

    Article  PubMed Central  PubMed  Google Scholar 

  86. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174(4):1149–1153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Smith JS, Tachibana I, Passe SM et al (2001) PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst 93(16):1246–1256

    Article  CAS  PubMed  Google Scholar 

  88. Liu L, Backlund LM, Nilsson BR et al (2005) Clinical significance of EGFR amplification and the aberrant EGFRvIII transcript in conventionally treated astrocytic gliomas. J Mol Med 83(11):917–926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Frederick L, Wang XY, Eley G, James CD (2000) Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60(5):1383–1387

    CAS  PubMed  Google Scholar 

  90. Wong AJ, Ruppert JM, Bigner SH et al (1992) Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci USA 89(7):2965–2969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Wessels PH, Twijnstra A, Kessels AG et al (2002) Gain of chromosome 7, as detected by in situ hybridization, strongly correlates with shorter survival in astrocytoma grade 2. Genes Chromosomes Cancer 33(3):279–284

    Article  CAS  PubMed  Google Scholar 

  92. Okada Y, Ohno C, Ueki K, Ogino M, Kawamoto S, Kim P (2007) Comparison of numerical change of epidermal growth factor receptor gene among pre- and postradiation glioma, and gliosis, and its clinical use. Brain Tumor Pathol 24(1):15–18

    Article  PubMed  Google Scholar 

  93. Burel-Vandenbos F, Benchetrit M, Miquel C et al (2011) EGFR immunolabeling pattern may discriminate low-grade gliomas from gliosis. J Neurooncol 102(2):171–178

    Article  CAS  PubMed  Google Scholar 

  94. Camelo-Piragua S, Jansen M, Ganguly A et al (2011) A sensitive and specific diagnostic panel to distinguish diffuse astrocytoma from astrocytosis: chromosome 7 gain with mutant isocitrate dehydrogenase 1 and p53. J Neuropathol Exp Neurol 70(2):110–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Cooper LA, Gutman DA, Chisolm C et al (2012) The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. Am J Pathol 180(5):2108–2119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Cooper LA, Gutman DA, Long Q et al (2010) The proneural molecular signature is enriched in oligodendrogliomas and predicts improved survival among diffuse gliomas. PLoS ONE 5(9):e12548

    Article  PubMed Central  PubMed  Google Scholar 

  98. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science (New York, N.Y.) 321(5897):1807–1812

    Article  CAS  Google Scholar 

  99. Noushmehr H, Weisenberger DJ, Diefes K et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Kloosterhof NK, Bralten LB, Dubbink HJ, French PJ, van den Bent MJ (2011) Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol 12(1):83–91

    Article  CAS  PubMed  Google Scholar 

  101. Capper D, Reuss D, Schittenhelm J et al (2011) Mutation-specific IDH1 antibody differentiates oligodendrogliomas and oligoastrocytomas from other brain tumors with oligodendroglioma-like morphology. Acta Neuropathol 121(2):241–252

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the AANS/CNS Joint Guidelines Committee for their review, comments and suggestions, the contributions of Laura Mitchell, CNS Guidelines Manager for organizational assistance, Maxine Brown for searching for and retrieving literature and Amy Allison for reference library consultations. We would also like to acknowledge the following individual JGC members for their contributions throughout the review process: Sepideh Amin-Hanjani, MD, FAANS, FACS, FAHA, Martina Stippler, MD, Alexander Khalessi, MD, Isabelle Germano, MD, Sean D. Christie, MD, FRCS (C), Gregory J. Zipfel, MD, Zachary Litvack, MD, MCR, Ann Marie Flannery, MD, Patricia B Raksin, MD, Joshua M. Rosenow, MD, FACS, Steven Casha, MD, PhD, Julie G. Pilitsis, MD, PhD, Gabriel Zada, MD, Adair Prall, Krystal Tomei, MD, Gregory W Hawryluk, MD.

Conflict of interest

Task Force members report potential COIs prior to beginning work on the guideline and at the time of publication. COI disclosures are reviewed by the Task Force Chair and taken into consideration when determining writing assignments. Resolution of potential COIs included Task Force members were assigned to chapters that did not involve or in any way relate to the potential COIs disclosed.

Disclaimer of liability

The information in these guidelines reflects the current state of knowledge at the time of completion. The presentations are designed to provide an accurate review of the subject matter covered. These guidelines are disseminated with the understanding that the recommendations by the authors and consultants who have collaborated in their development are not meant to replace the individualized care and treatment advice from a patient’s physician(s). If medical advice or assistance is required, the services of a physician should be sought. The proposals contained in these guidelines may not be suitable for use in all circumstances. The choice to implement any particular recommendation contained in these guidelines must be made by a managing physician in light of the situation in each particular patient and on the basis of existing resources.

Funding Source

These guidelines were funded exclusively by the CNS and Tumor Section of the American Association of Neurological Surgeons and the Congress of Neurological Surgeons whom received no funding from outside commercial sources to support the development of this document unless otherwise stated in this section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Brat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brat, D.J., Ryken, T.C., Kalkanis, S.N. et al. The role of neuropathology in the management of progressive glioblastoma. J Neurooncol 118, 461–478 (2014). https://doi.org/10.1007/s11060-013-1331-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-013-1331-z

Keywords

Navigation