Skip to main content

Advertisement

Log in

Characterization of bevacizumab dose response relationship in U87 brain tumors using magnetic resonance imaging measures of enhancing tumor volume and relative cerebral blood volume

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Despite the early promising results with the anti-angiogenic agent, bevacizumab, to prolong time to progression in patients with brain tumors, the optimal dose and drug combinations have not yet been defined. The purpose of this study was to characterize the bevacizumab dose–response relationship for brain tumors by measuring the contrast-agent enhanced tumor volumes and relative cerebral blood volume (rCBV) using dynamic susceptibility contrast (DSC) imaging. The studies, performed in the U87 brain tumor model using doses of bevacizumab ranging from 0 to 10 mg/kg, demonstrate that tumor growth and vascularity are inhibited at all doses used, compared to untreated controls. However, only the maximum dose showed a statistically significant difference in growth rate. Conversely tumor vascularity, as measured with rCBV, was inhibited equally well for all doses used with no clear indication that higher doses are more effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stupp R, Mason WP, Van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  2. Kurpad SN, Dolan ME, McLendon RE, Archer GE, Moschel RC, Pegg AE, Bigner DD, Friedman HS (1997) Intraarterial O6-benzylguanine enables the specific therapy of nitrosourea-resistant intracranial human glioma xenografts in athymic rats with 1, 3-bis(2-chloroethyl)-1-nitrosourea. Cancer Chemother Pharmacol 39:307–316

    Article  PubMed  CAS  Google Scholar 

  3. Rich JN, Sathornsumetee S, Keir ST, Kieran MW, Laforme A, Kaipainen A, McLendon RE, Graner MW, Rasheed BK, Wang L, Reardon DA, Ryan AJ, Wheeler C, Dimery I, Bigner DD, Friedman HS (2005) ZD6474, a novel tyrosine kinase inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor, inhibits tumor growth of multiple nervous system tumors. Clin Cancer Res 11:8145–8157

    Article  PubMed  CAS  Google Scholar 

  4. Heimberger AB, Archer GE, McLendon RE, Hulette C, Friedman AH, Friedman HS, Bigner DD, Sampson JH (2000) Temozolomide delivered by intracerebral microinfusion is safe and efficacious against malignant gliomas in rats. Clin Cancer Res 6:4148–4153

    PubMed  CAS  Google Scholar 

  5. Vredenburgh JJ, Desjardins A, Herndon JE II, Dowell JM, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Wagner M, Bigner DD, Friedman AH, Friedman HS (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13:1253–1259

    Article  PubMed  CAS  Google Scholar 

  6. Ansiaux R, Baudelet C, Jordan BF, Beghein N, Sonveaux P, De Wever J, Martinive P, Gregoire V, Feron O, Gallez B (2005) Thalidomide radiosensitizs tumors through early changes in the tumor microenvironment. Cancer Res 11:743–750

    CAS  Google Scholar 

  7. Huber PE, Bischof M, Jenne J, Heiland S, Peschke P, Saffich R, Grone HJ, Debus J, Lipson KE, Abdollahi A (2005) Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy. Cancer Res 65:3643–3655

    Article  PubMed  CAS  Google Scholar 

  8. Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, Munn LL, Jain RK (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563

    PubMed  CAS  Google Scholar 

  9. Tuma RS (2005) Success of bevacizumab trials raises questions for future studies. J Natl Cancer Inst 97:950–951

    Article  PubMed  Google Scholar 

  10. Bergsland E, Dickler MN (2004) Maximizing the potential of bevacizumab in cancer treatment. Oncologist 9:36–42

    Article  PubMed  CAS  Google Scholar 

  11. Donahue KM, Krouwer HG, Rand SD, Pathak AP, Marszalkowski CS, Censky SC, Prost RW (2000) Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 43:845–853

    Article  PubMed  CAS  Google Scholar 

  12. Schmainda KM, Rand SD, Joseph AM, Lund R, Ward BD, Pathak AP, Ulmer JL, Badruddoja MA, Krouwer HG (2004) Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. AJNR Am J Neuroradiol 25:1524–1532

    PubMed  Google Scholar 

  13. Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27:859–867

    PubMed  CAS  Google Scholar 

  14. Paulson ES, Prah DP, Schmainda KM (2008) Simultaneous measurement of DSC- and DCE-MRI parameters using dual-echo spiral with a standard dose of gadolinium. The International Society of Magnetic Resonance in Medicine annual meeting. Toronto, ON, Canada

  15. Paulson, ES, Prah, DP, Schmainda, KM (2007) Correction of confounding leakage and residual susceptibility effects in dynamic susceptibility contrast mr imaging using dual-echo SPIRAL. The American Society of Neuroradiology annual meeting. Chicago, IL

  16. Paulson ES, Prah DP, Schmainda KM (2007) Compensation of confounding T1 and T2 dipolar and residual susceptibility effects in DSC-MRI using dual-echo SPIRAL. The International Society of Magnetic Resonance in Medicine annual meeting. Berlin, Germany

  17. Bedekar D, Jensen T, Schmainda KM (2010) Standardization of relative cerebral blood volume (rCBV) image maps for ease of both inter- and intrapatient comparisons. Magn Reson Med 64:907–913

    Article  PubMed  Google Scholar 

  18. Willett CG, Boucher Y, di Tomaso E, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, Jain RK (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    Article  PubMed  CAS  Google Scholar 

  19. Liang WC, Wu X, Peale FV, Lee CV, Meng YG, Gutierrez J, Fu L, Malik AK, Gerber HP, Ferrara N, Fuh G (2006) Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J Biol Chem 281:951–961

    Article  PubMed  CAS  Google Scholar 

  20. Gerber HP, Kowalski J, Sherman D, Eberhard DA, Ferrara N (2000) Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res 60:6253–6258

    PubMed  CAS  Google Scholar 

  21. Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M, Neilsen G, Taksir T, Jain RK, Seed B (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725

    Article  PubMed  CAS  Google Scholar 

  22. Kishimoto J, Ehama R, Ge Y, Kobayashi T, Nishiyama T, Detmar M, Burgeson RE (2000) In vivo detection of human vascular endothelial growth factor promoter activity in transgenic mouse skin. Am J Pathol 157:103–110

    Article  PubMed  CAS  Google Scholar 

  23. Barbera-Guillem E, Nyhus JK, Wolford CC, Friece CR, Sampsel JW (2002) Vascular endothelial growth factor secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune complexes potentiate the process. Cancer Res 62:7042–7049

    PubMed  CAS  Google Scholar 

  24. Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WK, Paleologos N, Nicholas MK, Jensen R, Vredenburgh J, Huang J, Zheng M, Cloughesy T (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27:4733–4740

    Article  PubMed  CAS  Google Scholar 

  25. Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, Garren N, Mackey M, Butman JA, Camphausen K, Park J, Albert PS, Fine HA (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Onco 27:740–745

    Article  CAS  Google Scholar 

  26. Ballman KV, Buckner JC, Brown PD, Giannini C, Flynn PJ, LaPland BR, Jaeckle KA (2007) The relationship between six-month progression-free survival and 12-month overall survival end points for phase II trials in patients with glioblastoma multiforme. Neuro-oncol 9:29–38

    Article  PubMed  CAS  Google Scholar 

  27. Lindner DJ, Borden EC (1997) Effects of tamoxifen and interferon-beta or the combination on tumor-induced angiogenesis. Int J Cancer 71:456–461

    Article  PubMed  CAS  Google Scholar 

  28. Poptani H, Puumalainen AM, Gröhn OH, Loimas S, Kainulainen R, Ylä-Herttuala S, Kauppinen RA (1998) Monitoring thymidine kinase and ganciclovir-induced changes in rat malignant glioma in vivo by nuclear magnetic resonance imaging. Cancer Gene Ther 5:101–109

    PubMed  CAS  Google Scholar 

  29. Norden AD, Young GS, Setayesh K, Muzikansky A, Klufas R, Ross GL, Ciampa AS, Ebbeling LG, Levy B, Drappatz J, Kesari S, Wen PY (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70:779–787

    Article  PubMed  CAS  Google Scholar 

  30. Iwamoto FM, Abrey LE, Beal K, Gutin PH, Resenblum MK, Reuter VE, DeAngelis LM, Lassman AB (2009) Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma. Neurology 73:1200–1206

    Article  PubMed  CAS  Google Scholar 

  31. Weber MA, Zoubaa S, Schlieter M, Jüttler E, Huttner HB, Geletneky K, Ittrich C, Lichy MP, Kroll A, Debus J, Giesel FL, Hartmann M, Essig M (2006) Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 66:1899–1906

    Article  PubMed  CAS  Google Scholar 

  32. Wagner Schuman ML, Bedekar D, Kvasnica K, Fishman M, Paulson ES, Rand SD, Krouwer HG, Schmainda KM (2008) A multiparameter DSC study demonstrates the best predictor of brain tumor grade. The International Society of Magnetic Resonance in Medicine annual meeting. Toronto, ON, Canada

  33. Hu LS, Baxter LC, Smith KA, Feuerstein BG, Karis JP, Eschbacher JM, Coons SW, Makaji P, Yeh RF, Debbins J, Heiserman JE (2009) Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 30:552–558

    Article  PubMed  CAS  Google Scholar 

  34. Vredenburgh JJ, Desjardins A, Herndon JE II, Marcello J, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Sampson J, Wagner M, Bailey L, Bigner DD, Friedman AH, Friedman HS (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729

    Article  PubMed  CAS  Google Scholar 

  35. Willett CG, Boucher Y, Duda DG, di Tomaso E, Munn LL, Tong RT, Kozin SV, Petit L, Jain RK, Chung DC, Sahani DV, Kalva SP, Cohen KS, Scadden DT, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Shellito PC, Mino-Kenudson M, Lauwers GY (2005) Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol 23:8136–8139

    Article  PubMed  Google Scholar 

  36. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, Steinberg SM, Chen HX, Rosenberg SA (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349:427–434

    Article  PubMed  CAS  Google Scholar 

  37. Herbst RS, O’Neill VJ, Fehrenbacher L, Belani CP, Bonomi PD, Hart L, Melnyk O, Ramies D, Lin M, Sandler A (2007) Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non small-cell lung cancer. J Clin Oncol 25:4743–4750

    Article  PubMed  CAS  Google Scholar 

  38. Wu S, Kim C, Baer L, Zhu X (2010) Bevacizumab increases risk for severe proteinuria in cancer patients. J Am Soc Nephrol 21:1381–1389

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Genentech for the generous gift of Avastin and R. Harris and M. Runquist for technical assistance. This work was supported by National Institute of Health Grant CA-082500 to K.M. Schmainda and MCW Advancing Healthier Wisconsin/Translational Brain Tumor Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly R. Pechman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pechman, K.R., Donohoe, D.L., Bedekar, D.P. et al. Characterization of bevacizumab dose response relationship in U87 brain tumors using magnetic resonance imaging measures of enhancing tumor volume and relative cerebral blood volume. J Neurooncol 105, 233–239 (2011). https://doi.org/10.1007/s11060-011-0591-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0591-8

Keywords

Navigation