Skip to main content
Log in

Neurophysiological Features of Cognitive Activity in Patients with Anxiety-Depressive and Hypochondriasis Disorders

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Objective. To study the neurophysiological features of cognitive activity in patients with anxiety-depressive and hypochondriasis disorders. Materials and methods. A total of 65 subjects were studied: 16 with hypochondriasis disorder, 23 with mixed anxiety and depressive disorder, and 26 healthy subjects. Heart rate variability and electroencephalography methods were used. Results and conclusions. The EEG showed a decrease in the β1 range after performance of a cognitive task in patients with anxiety-depressive disorder. Patients with hypochondriasis disorder showed a decrease in the duration of the R–R interval and an increase in the frequency of the resting β1 range, an increase in the dominant frequency of β2 activity during performance of the cognitive task, and an increase in the spread of θ frequencies after cognitive tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Lederbogen, P. Kirsch, L. Haddad, et al., “City living and urban upbringing affect neural social stress processing in humans,” Nature, 474, No. 7352, 498–501 (2011), https://doi.org/https://doi.org/10.1038/nature10190.

    Article  CAS  Google Scholar 

  2. R. Kessler, “The effects of stressful life events on depression,” Ann. Rev. Psychol., 48, No. 1, 191–214 (1997), https://doi.org/https://doi.org/10.1146/annurev.psych.48.1.191.

    Article  CAS  Google Scholar 

  3. E. Bromet, L. H. Andrade, I. Hwang, et al., “Cross-national epidemiology of DSM-IV major depressive episode,” BMC Medicine, 9, 90 (2011), https://doi.org/https://doi.org/10.1186/1741-7015-9-90.

  4. V. N. Krasnov, “Diagnosis and classification of mental disorders in Russian psychiatry: affective spectrum disorders,” Sotsial. Klin. Psikhiatr., 20, No. 4, 58–63 (2013).

    Google Scholar 

  5. A. B. Smulevich (ed.), Depression and Comorbid Disorders, Moscow (1997).

  6. W. Rief, A. Hessel, and E. Braehler, “Somatization symptoms and hypochondriacal features in the general population,” Psychosom. Med., 63, 595–602 (2001), http://doi.org/https://doi.org/10.1097/00006842-200107000-00012.

    Article  CAS  Google Scholar 

  7. R. Leibbrand, W. Hiller, and M. M. Fichter, “Hypochondriasis and somatization: two distinct aspects of somatoform disorders?” J. Clin. Psychol., 56, No. 1, 63–72 (2000), https://doi.org/10.1002/(SICI) 1097-4679(200001)56:1<63::AID-JCLP6>3.0.CO;2-O.

  8. R. Hirschfield, “The comorbidity of major depression and anxiety disorders,” Prim. Care Compan. J. Clin. Psychiatry, 3, No. 6, 244–254 (2001), https://doi.org/https://doi.org/10.4088/pcc.v03n0609.

    Article  Google Scholar 

  9. D. A. Cousins and H. Grunze, “Interpreting magnetic resonance imaging findings in bipolar disorder,” CNS Neurosci. Ther., 18, No. 3, 201–207 (2012), https://doi.org/https://doi.org/10.1111/j.1755-5949.2011.00280.x.

    Article  Google Scholar 

  10. J. B. Savitz and W. C. Drevets, “Imaging phenotypes of major depressive disorder: genetic correlates,” Neuroscience, 164, No. 1, 300–330 (2009), https://doi.org/https://doi.org/10.1016/j.neuroscience.2009.03.082.

    Article  CAS  Google Scholar 

  11. J. B. Savitz and W. C. Drevets, “Neuroreceptor imaging in depression,” Neurobiol. Dis., 52, 49–65 (2013), https://doi.org/https://doi.org/10.1016/j.nbd.2012.06.001.

    Article  CAS  Google Scholar 

  12. R. M. Baevskii, G. G. Ivanov, L. V. Chireikin, et al., “Analysis of heart rhythm variability using various electrocardiography systems (methodological guidelines),” Vestn. Aritmol., 24, 65–87 (2001).

    Google Scholar 

  13. B. M. Appelhans and L. J. Luecken, “Heart rate variability as an index of regulated emotional responding,” Rev. Gen. Psychol., 10, 229–240 (2006), http://doi.org/https://doi.org/10.1037/1089-2680.10.3.229.

    Article  Google Scholar 

  14. P. M. Baevskii, O. I. Kirillov, and S. E. Kletskin, Mathematical Analysis of Changes in Cardiac Rhythm in Stress, Nauka, Moscow (1984).

    Google Scholar 

  15. G. Valenza, P. Allegrini, A. Lanatà, and E. P. Scilingo, “Dominant Lyapunov exponent and approximate entropy in heart rate variability during emotional visual elicitation,” Front. Neuroeng., 5, 3 (2012), https://doi.org/https://doi.org/10.3389/fneng.2012.00003.

  16. J. Keller, J. B. Nitschke, T. Bhargava, et al., “Neuropsychological differentiation of depression and anxiety,” J. Abnorm. Psychol., 109, No. 1, 3–10 (2000), http://doi.org/https://doi.org/10.1037/0021-843X.109.1.3.

    Article  CAS  Google Scholar 

  17. R. I. Machinskaya, “Executive systems of the brain,” Zh. Vyssh. Nerv. Deyat., 65, No. 1, 33–60 (2015), https://doi.org/https://doi.org/10.7868/S0044467715010086.

    Article  Google Scholar 

  18. G. E. Bruder, C. E. Tenke, V. Warner, et al., “Electroencephalographic measures of regional hemispheric activity in offspring at risk for depressive disorders,” Biol. Psychiatry, 57, No. 4, 328–335 (2005), https://doi.org/https://doi.org/10.1016/j.biopsych.2004.11.015.

    Article  Google Scholar 

  19. I. R. Il’yuchenok, A. N. Savost’yanov, and R. G. Valeev, “Dynamics of the spectral characteristics of the θ and α EEG ranges in negative emotional reactions,” Zh. Vyssh. Nerv. Deyat., 51, No. 5, 563–571 (2001).

    Google Scholar 

  20. V. B. Strelets, N. N. Danilova, and I. V. Kornilova, “EEG rhythms and psychological indicators of emotions in reactive depression,” Zh. Vyssh. Nerv. Deyat., 47, No. 1, 11–21 (1997).

    CAS  Google Scholar 

  21. T. S. Mel’nikova, and I. A. Lapin, “EEG coherence analysis in depressive disorders of different origins,” Sotsial. Klin. Psikhiatr., 18, No. 3, 27–32 (2008).

    Google Scholar 

  22. J. Bailer, M. Witthöft, M. Erkic, and D. Mier, “Emotion dysregulation in hypochondriasis and depression,” Clin. Psychol. Psychother., 24, No. 6, 1254–1262 (2017), https://doi.org/https://doi.org/10.1002/cpp.2089.

    Article  Google Scholar 

  23. A. H. Kemp, K. Griffiths, K. L. Felmingham, et al., “Disorder specificity despite comorbidity: resting EEG alpha asymmetry in major depressive disorder and post-traumatic stress disorder,” Biol. Psychiatry, 85, No. 2, 350–354 (2010), https://doi.org/https://doi.org/10.1016/j.biopsycho.2010.08.001.

    Article  CAS  Google Scholar 

  24. B. Saletu, P. Anderer, and G. M. Saletu-Zyhlarz, “EEG topography and tomography (LORETA) in diagnosis and pharmacotherapy of depression,” Clin. EEG Neurosci., 41, No. 4, 203–210 (2010), https://doi.org/https://doi.org/10.1177/155005941004100407.

    Article  CAS  Google Scholar 

  25. G. E. Bruder, R. Fong, C. E. Tenke, et al., “Regional brain asymmetries in major depression with or without an anxiety disorder: a quantitative electroencephalographic study,” Biol. Psychiatry, 41, No. 9, 939–948 (1997), https://doi.org/https://doi.org/10.1016/S0006-3223(96)00260-0.

    Article  CAS  Google Scholar 

  26. L. B. Ivanov, N. N. Strekalina, N. Yu. Chulkova, and A. B. V. Budkevich, “Variants of the spatial distribution of α activity depending on the type of affective disorder,” Funkts. Diagn., 1, 41–50 (2009).

    Google Scholar 

  27. J. B. Allen, H. L. Urry, S. K. Hitt, and J. A. Coan, “The stability of resting frontal electroencephalographic asymmetry in depression,” Psychophysiology, 41, 269–280 (2004), https://doi.org/https://doi.org/10.1111/j.1469-8986.2003.00149.x.

    Article  Google Scholar 

  28. L. A. Bokeriya, O. L. Bokeriya, and I. V. Volkovskaya, “Cardiac rhythm variability: measurement methods, interpretation, and clinical utilization,” Annaly Aritmol., 4, 21–32 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Lebedeva.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 119, No. 3, Iss. 1, pp. 43–49, March, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, N.N., Maltsev, V.Y., Pochigaeva, K.I. et al. Neurophysiological Features of Cognitive Activity in Patients with Anxiety-Depressive and Hypochondriasis Disorders. Neurosci Behav Physi 50, 137–142 (2020). https://doi.org/10.1007/s11055-019-00879-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00879-w

Keywords

Navigation