Skip to main content
Log in

Motor Imagery and Its Practical Application

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The physiological mechanisms underlying the process of motor imagery have significant similarities with the mechanisms of motor control, and this can be used for the rehabilitation of patients with movement disorders. In patients with severe paresis, motor imagery may be the only method producing movement recovery. Over the last decade, this has led to increasing interest in studies of the function of motor imagery. Brain–computer interface technologies can be used monitor training with imaginary movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. A. Mokienko, O. A. Chernikova, and A. A. Frolov, “Brain–computer interfaces as a new rehabilitation technology,” Annals Klin. Eksperim. Nevrol., 5, No. 3, 46–52 (2011).

    Google Scholar 

  2. G. Abbruzzese, A. Assini, A. Buccolieri, et al., “Changes of intracortical inhibition during motor imagery in human subjects,” Neurosci. Lett., 263, No. 2–3, 113–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. K. K. Ang, C. Guan, K. S. Chua, et al., “Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain–computer interface with robotic feedback,” in: Conf. Proc. IEEE Eng. Med. Soc. 2010, Buenos Aires (2010), pp. 5549–5552.

  4. F. Atienza, I. Balaguer, and M. L. Garcia-Merita, “Factor analysis and reliability of the movement imagery questionnaire,” Percept. Mot. Skills, 78, No. 3, Part 2, 1323–1328 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. A. Blair, C. Hall, and G. Leyshon, “Imagery effects on the performance of skilled and novice soccer players,” J. Sports Sci., 11, No. 2, 95–101 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. M. S. Boschker, F. C. Bakker, and M. R. Rietberg, “Retroactive interference effects of mentally imagined movement speed,” J. Sports Sci., 18, No. 8, 593–603 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. S. M. Braun, A. J. Beurskens, P. J. Borm, et al., “The effects of mental practice in stroke rehabilitation: a systematic review,” Arch. Physiol. Med. Rehabil., 87, No. 6, 842–852 (2006).

    Article  Google Scholar 

  8. D. Broetz, C. Braun, C. Weber, et al., “Combination of brain–computer interface training and goal-directed physical therapy in chronic stroke: a case report,” Neurorehabil. Neural. Repair, 24, No. 7, 674–679 (2010).

    Article  PubMed  Google Scholar 

  9. A. J. Butler, J. Cazeaux, A. Fidler, et al., “The movement imagery questionnaire – revised, Second Edition (MIQ-RS) is a reliable and valid tool for evaluating motor imagery in stroke populations,” Evid. Based Complement. Alternat. Med., 2012:497289–497301 (2012).

    PubMed Central  PubMed  Google Scholar 

  10. A. Caria, C. Weber, D. Brotz, et al., “Chronic stroke recovery after combined BCI training and physiotherapy: A case report,” Psychophysiology, 48, No. 4, 578–582 (2011).

    Article  PubMed  Google Scholar 

  11. P. Cicinelli, B. Marconi, M. Zaccagnini, et al., “Imagery-induced cortical excitability changes in stroke: a transcranial magnetic stimulation study,” Cereb. Cortex, 16, No. 2, 247–253 (2006).

    Article  PubMed  Google Scholar 

  12. D. J. Crammond, “Motor imagery: never in your wildest dream,” Trends Neurosci., 20, No. 12, 54–57 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. F. P. De Lange, P. Hagoort, and I. Toni, “Neural topography and content of movement representations,” J. Cogn. Neurosci., 17, No. 1, 97–112 (2005).

    Article  PubMed  Google Scholar 

  14. S. De Vries and T. Mulder, “Motor imagery and stroke rehabilitation: a critical discussion,” J. Rehabil. Med., 39, No. 1, 5–13 (2007).

    Article  PubMed  Google Scholar 

  15. J. Decety and D. H. Ingvar, “Brain structures participating in mental stimulation of motor behavior: a neuropsychological interpretation,” Acta Psychol., 73, No. 1, 13–34 (1990).

    Article  CAS  Google Scholar 

  16. J. Decety, M. Jeannerod, D. Durozard, and G. Baverel, “Central activation of autonomic effectors during mental stimulation of motor actions in man,” J. Physiol., 461, 549–563 (1993).

    CAS  PubMed Central  PubMed  Google Scholar 

  17. R. Dickstein and J. E. Deutsch, “Motor imagery in physical therapist practice,” Phys. Ther., 87, No. 7, 942–953 (2007).

    Article  PubMed  Google Scholar 

  18. H. C. Dijkerman, M. Ietswaart, M. Johnston, and R. S. MacWalter, “Does motor imagery training improve hand function in chronic stroke patients? A pilot study,” Clin. Rehabil., 18, No. 5, 538–549 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. H. H. Ehrsson, S. Geyer, and E. Naito, “Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-partspecific motor representations,” J. Neurophysiol., 90, No. 5, 3304–3316 (2003).

    Article  PubMed  Google Scholar 

  20. L. Fadiga, G. Buccino, L. Craighero, et al., “Corticospinal excitability is specifically modulated by motor imagery: a magnetic stimulation study,” Neuropsychologia, 37, No. 2, 147–158 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. C. L. Fansler, C. L. Poff, and K. F. Shepard, “Effects of mental practice on balance in elderly women,” Phys. Ther., 65, No. 9, 1332–1338 (1985).

    CAS  PubMed  Google Scholar 

  22. A. Gaggioli, A. Meneghini, F. Morganti, et al., “A strategy for computer-assisted mental practice in stroke rehabilitation,” Neurorehabil. Neural Repair, 20, No. 4, 503–507 (2006).

    Article  PubMed  Google Scholar 

  23. C. R. Hall, “Individual differences in the mental practice and imagery of motor skill performance,” Can. J. Appl. Sport. Sci., 10, No. 4, 17–21 (1985).

    Google Scholar 

  24. M. F. Hamel and Y. Lajoie, “Mental imagery. Effects on static balance and attentional demands of the elderly,” Aging. Clin. Exp. Res., 17, No. 3, 223–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. T. Hanakawa, I. Immisch, K. Toma, et al., “Functional properties of brain areas associated with motor execution and imagery,” J. Neurophysiol., 89, No. 2, 989–1002 (2003).

    Article  PubMed  Google Scholar 

  26. R. Hashimoto and J. C. Rothwell, “Dynamic changes in corticospinal excitability during motor surgery,” Exp. Brain Res., 125, No. 1, 75–81 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. P. L. Jackson, M. F. Lafleur, F. Malouin, et al., “Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery,” Neuroimage, 20, No. 2, 1171–1180 (2003).

    Article  PubMed  Google Scholar 

  28. M. Jeannerod, “Neural stimulation of action: a unifying mechanism for motor cognition,” Neuroimage, 14, No. 1, Part 2, 103–109 (2001).

    Article  Google Scholar 

  29. M. G. Lacourse, E. L. Orr, S. C. Cramer, and M. J. Cohen, “Brain activation during execution and motor imagery of novel and skilled sequential hand movements,” Neuroimage, 27, No. 3, 505–519 (2005).

    Article  PubMed  Google Scholar 

  30. K. P. Liu, C. C. Chan, T. M. Lee, and C. W. Hui-Chan, “Mental imagery for promoting relearning for people after stroke: a randomized controlled trial,” Arch. Physiol. Med. Rehabil., 85, No. 9, 1403–1408 (2004).

    Article  Google Scholar 

  31. M. Lotze and L. G. Cohen, “Volition and imagery in neurorehabilitation,” Cogn. Behav. Neurol., 19, No. 3, 135–140 (2006).

    Article  PubMed  Google Scholar 

  32. M. Lotze and U. Halsband, “Motor imagery,” J. Physiol., 99, No. 4–6, 386–395 (2006).

    Google Scholar 

  33. S. Makeig, M. Westerfield, T. P. Jung, et al., “Dynamic brain sources of visual evoked responses,” Science, 295, No. 5555, 690–694 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. F. Malouin, C. L. Richards, P. L. Jackson, et al., “Brain activation during motor imagery of locomotor-related tasks: a PET study,” Hum. Brain Mapp., 19, No. 1, 47–62 (2003).

    Article  PubMed  Google Scholar 

  35. F. Malouin, C. L. Richards, P. L. Jackson, et al., “The kinesthetic and visual imagery questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: a reliability and construct validity study,” J. Neurol. Physiol. Ther., 31, No. 1, 20–29 (2007).

    Article  Google Scholar 

  36. D. J. McFarland, L. A. Miner, T. M. Vaughan, and J. R. Wolpaw, “Mu and beta rhythm, topographies during motor imagery and actual movements,” Brain Topogr., 12, No. 3, 177–186 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. A. Mohapp and R. Scherer, “Single-trial EEG classification of executed and imagined hand movements in hemiparetic stroke patients,” in: 3rd Int. BCI Workshop and Training Course Graz (2006), pp. 80–81.

  38. T. Mulder, “Motor imagery and action observation: cognitive tools for rehabilitation,” J. Neural Transm., 114, No. 10, 1265–1278 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  39. C. Neuper, R. Scherer, M. Reinber, and G. Pfurtscheller, “Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG,” Brain Res. Cogn. Brain Res., 25, No. 3, 668–677 (2005).

    Article  PubMed  Google Scholar 

  40. L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain computer interfaces, a review,” Sensory (Basel), 12, No. 2, 1211–1279 (2012).

    Article  Google Scholar 

  41. S. J. Page, P. Levine, and A. Leonard, “Mental practice in chronic stroke: results of a randomized, placebo-controlled trial,” Stroke, 38, No. 4, 1293–1297 (2007).

    Article  PubMed  Google Scholar 

  42. S. J. Page, P. Levine, and A. C. Leonard, “Effects of mental practice on affected limb use and function in chronic stroke,” Arch. Physiol. Med. Rehabil., 86, No. 3, 399–402 (2005).

    Article  Google Scholar 

  43. L. M. Parsons, “Integrating cognitive psychology, neurology and neuroimaging,” Acta Psychol., 107, No. 1–3, 155–181 (2001).

    Article  CAS  Google Scholar 

  44. L. M. Parsons, P. T. Fox, J. H. Downs, et al., “Use of implicit motor imagery for visual shape discrimination as revealed by PET,” Nature, 375, No. 6526, 54–58 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. A. Pascual-Leone, D. Nguyet, L. G. Cohen, et al., “Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills,” J. Neurophysiol., 74, No. 3, 1037–1045 (1995).

    CAS  PubMed  Google Scholar 

  46. G. Pfurtscheller and A. Aranibar, “Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement,” EEG Clin. Neurophysiol., 46, No. 2, 138–146 (1979).

    Article  CAS  Google Scholar 

  47. G. Pfurtscheller, C. Brunner, A. Schlogel, and F. Lopes da Silva, “Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks,” Neuroimage, 31, 153–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. G. Prasad, P. Herman, D. Coyle, et al., “Applying a brain–computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study,” J. Neuroeng. Rehabil., 7, No. 1, 60–78 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  49. R. Roberts, N. Callow, L. Hardy, et al., “Movement imagery ability: development and assessment of a revised version of the vividness of movement imagery questionnaire,” J. Sport. Exerc. Psychol., 30, No. 2, 200–221 (2008).

    PubMed  Google Scholar 

  50. C. Schuster, J. Butler, B. Andrews, et al., “Comparison of embedded and added motor imagery training in patients after stroke: results of a randomised controlled pilot trial,” Trials, 13, 11–30 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  51. C. Schuster, R. Hilfiker, O. Amft, et al., “Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines,” Biol. Med. Centr. Med., 9, 75–110 (2011).

    Google Scholar 

  52. N. Sharma, P. S. Jones, T. A. Carpenter, and J. C. Baron, “Mapping the involvement of BA 4a and 4p during motor imagery,” Neuroimage, 41, No. 1, 92–99 (2008).

    Article  PubMed  Google Scholar 

  53. N. Sharma,V. M. Pomeroy, and J. C. Baron, “Motor imagery: a backdoor to the motor system after stroke?” Stroke, 37, No. 7, 1941–1952 (2006).

    Article  PubMed  Google Scholar 

  54. N. Sharma, L. H. Simmons, P. S. Jones, et al., “Motor imagery after subcortical stroke: a functional magnetic resonance imaging study,” Stroke, 40, No. 4, 1315–1324 (2009).

    Article  PubMed  Google Scholar 

  55. J. J. Shih, D. J. Krusieski, and J. R. Wolpaw, “Brain–computer interfaces in medicine,” Mayo Clin. Proc., 87, No. 3, 268–279 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  56. A. Sirigu, L. Cohen, J. R. Duhamel, et al., “Congruent unilateral impairments for real and imagined hand movements,” Neuroreport, 6, No. 7, 997–1001 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. B. Steenbergen, C. Craje, D. M. Nilson, and A. M. Gordon, “Motor imagery training in hemiplegic cerebral palsy: a potentially useful therapeutic tool for rehabilitation,” Dev. Med. Child. Neurol., 51, No. 9, 690–696 (2009).

    Article  PubMed  Google Scholar 

  58. J. A. Stevens and M. E. Stoykov, “Using motor imagery in the rehabilitation of hemiparesis,” Arch. Physiol. Med. Rehabil., 84, No. 7, 1090–1092 (2003).

    Article  Google Scholar 

  59. C. M. Stinear, W. D. Byblow, M. Steyvers, et al., “Kinesthetic, but not visual, motor imagery modulates corticomotor excitability,” Exp. Brain Res., 168, No. 1–2, 157–164 (2006).

    Article  PubMed  Google Scholar 

  60. C. Stippich, H. Ochmann, and K. Sartor, “Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging,” Neurosci. Lett., 331, No. 1, 50–54 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. L. Warner and M. E. McNeill, “Mental imagery and its potential for physical therapy,” Physiol. Ther., 68, No. 4, 516–521 (1988).

    CAS  Google Scholar 

  62. L. Yaguez, D. Nagel, H. Hoffman, et al., “A mental route to motor learning: improving trajectorial kinematics through imagery training,” Behav. Brain Res., 90, No. 1, 95–106 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. G. Yue and K. J. Cole, “Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions,” J. Neurophysiol., 67, No. 5, 1114–1123 (1992).

    CAS  PubMed  Google Scholar 

  64. A. Zimmermann-Schlatter, C. Schuster, M. A. Puhan, et al., “Efficacy of moor imagery in post-stroke rehabilitation: a systematic review,” J. Neuroeng. Rehabil., 5, 8–18 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Mokienko.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 63, No. 2, pp. 195–204, March–April, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokienko, O.A., Chernikova, L.A., Frolov, A.A. et al. Motor Imagery and Its Practical Application. Neurosci Behav Physi 44, 483–489 (2014). https://doi.org/10.1007/s11055-014-9937-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-9937-y

Keywords

Navigation