Skip to main content

Advertisement

Log in

Update and Review of Continental Conductive Surface Heat Flow Measurements in México: An Analysis of Deep Boreholes

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Conductive heat flow is an important parameter that is used to explain, directly or indirectly, several geological, geophysical and geochemical processes in the Earth´s interior. It is also one of the main input parameters for reliable estimations of resources related with geothermal and petroleum systems. That is because heat flow is used to describe subsurface temperature profiles and heat transfer mechanisms, thereby enabling the establishment of heat storage reserves in the case of geothermal systems and conditions of thermal maturation of organic matter in petroleum genesis. Since 2014, collection of data to estimate new continental conductive heat flow values in México has been an exhaustive scientific task. As a result, data from 4159 sites have been compiled, mostly from deep geothermal and petroleum boreholes. In this context, only 3,888 new geothermal gradient data were compiled and used to estimate new heat flow values. These new values complement the 702 continental heat flow values compiled and published between 1974 and 2021. Traditionally, all efforts to measure geothermal gradient in México have focused on the five high enthalpy geothermal fields under exploitation. Therefore, this continuous updating of the continental heat flow database would be an excellent input for Geothermal Play Fairway Analysis, enabling to define areas at a regional level with thermal anomalies and discovering new prospects, resulting in better knowledge of Mexican geothermal resources. Finally, the obtained data will help interested private and public entities to improve the geothermal exploration techniques in collaboration with academic institutions. Moreover, the scientific community interested in Earth science studies will benefit from this information with application to diverse research that involves the thermal evolution of the crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Availability of data and materials

https://github.com/omespinozaojeda/Mexico_HF_database.git.

References

  • Aguilar-Ojeda, J. A., Campos-Gaytán, J. R., Villela, A., Herrera-Oliva, C. S., Ramírez-Hernandez, J., & Kretzschmar, T. G. (2021). Understanding hydrothermal behavior of the Maneadero geothermal system, Ensenada, Baja California, Mexico. Geothermics, 89, 101985.

    Article  Google Scholar 

  • Almaguer, J., Lopez-Loera, H., Macias, J. L., Saucedo, R., Yutsis, V., & Guevara, R. (2020). Geophysical modeling of La Primavera caldera and its relation to volcanology activity based on 3D susceptibility inversion and potential data analysis. Journal of Volcanology and Geothermal Research, 393, 106556.

    Article  Google Scholar 

  • Almirudis, E., Santoyo, E., Guevara, M., Paz-Moreno, F., & Portugal, E. (2018). Chemical and isotopic signatures of hot springs from east-central Sonora State, Mexico: a new prospection survey of promissory low-to-medium temperature geothermal systems. Revista Mexicana de Ciencias Geológicas, 35(2), 116–141.

    Article  Google Scholar 

  • American Association of Petroleum Geologists (AAPG). (1976). Basic data file from AAPG geothermal survey of North America. University of Oklahoma.

    Google Scholar 

  • Angelier, J., Colletta, B., Chorowicz, J., Ortlieb, L., & Rangin, C. (1981). Fault tectonics of the Baja California Peninsula and the opening of the Sea of Cortez, Mexico. Journal of Structural Geology, 3(4), 347–357.

    Article  Google Scholar 

  • Aranda-Gómez, J. J., Henry, C. D., & Luhr, J. F. (2000). Evolución tectonomagmática post-paleocéanica de la Sierra Madre Occidental y de la porción meridional de la provincia tectónica de Cuencas y Sierras, México. Boletín de la Sociedad Geológica Mexicana, 8, 59–71.

    Article  Google Scholar 

  • Aranda-Gómez, J. J., Luhr, J. F., Housh, T. B., Valdez-Moreno, G., & Chávez-Cabello, G. (2005). El volcanismo tipo intraplaca del Cenozoico tardío en el centro y norte de México: Una revisión. Boletín de la Sociedad Geológica Mexicana, LVII(3), 187–225.

    Article  Google Scholar 

  • Arango-Galván, C., Prol-Ledesma, R. M., Flores-Márquez, E. L., Canet, C., & Villanueva, R. E. (2011). Shallow submarine and subaerial, low-enthalpy hydrothermal manifestations in Punta Banda, Baja California, Mexico: Geophysical and geochemical characterization. Geothermics, 40(2), 102–111.

    Article  Google Scholar 

  • Arango-Galván, C., Prol-Ledesma, R. M., & Torres-Vera, M. A. (2015). Geothermal prospects in the Baja California Peninsula. Geothermics, 55, 39–57.

    Article  Google Scholar 

  • Avellán, D. R., Macías, J. L., Layer, P. W., Cisneros, G., Sánchez-Núñez, J. M., Gómez-Vasconcelos, M. G., Pola, A., Sosa-Ceballos, G., García-Tenorio, F., Reyes Agustín, G., Osorio-Ocampo, S., García-Sánchez, L., Mendiola, I. F., Marti, J., López-Loera, H., & Benowitz, J. (2018). Geology of the late Pliocene—Pleistocene Acoculco caldera complex, eastern Trans-Mexican Volcanic Belt (México). Journal of Maps, 15(2), 8–18.

    Article  Google Scholar 

  • Báncora, C., & Prol-Ledesma, R. M. (2008). Geothermal exploration using remote sensing in the south of Baja California Sur, Mexico. In Proceedings of the AIP conference proceedings (pp. 180–188). https://doi.org/10.1063/1.2937285

  • Barragán, R. M., Portugal, E., Birkle, P., Arellano, V. M., & Alvarez, J. (2000). Geochemical survey of medium temperature geothermal resources in the NW zone of México. In Proceedings of the 21th PNOC geothermal conference, Manila, Filipinas (pp. 233–240).

  • Barragán, R. M., Birkle, P., Portugal, E., Arellano, V. M., & Alvarez, J. (2001). Geochemical survey of medium temperature geothermal resources from Baja California and Sonora, Mexico. Journal of Volcanology and Geothermal Research, 110, 101–119.

    Article  Google Scholar 

  • Bartier, P. M., & Keller, P. (1996). Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Computers & Geosciences, 22(7), 795–799.

    Article  Google Scholar 

  • Becker, K. (1981). Heat flow studies of spreading center hydrothermal processes (Ph.D. dissertation, Scripps Institution of Oceanography, University of California, San Diego, California), 149p.

  • Becker, K., & Fisher, A. T. (1991). A brief review of heat-flow studies in the Guaymas Basin, Gulf of California. In J. P. Dauphin & B. R. Simoneit (Eds.), The Gulf and Peninsular Province of the Californias (pp. 709–720). American Association of Petroleum Geologists.

    Google Scholar 

  • Beltran-Abaunza, J. M., & Quintanilla-Montoya, A. L. (2001). Calculated heat flow for the Ensenada region, Baja California. Mexico. Ciencias Marinas, 27(4), 619–634.

    Article  Google Scholar 

  • Bevington, P. R., & Robinson, D. (2003). Data reduction and error analysis for the physical sciences (3rd ed., p. 320pp). McGraw Hill Higher Education.

    Google Scholar 

  • Blackwell, D.D., & Richards, M. (2004). Geothermal map of North America. In American Association of Petroleum Geologist (AAPG), 1 sheet, scale 1:6,500,000.

  • Buck, W. R. (1991). Modes of lithospheric extension. Journal of Geophysical Research, 96, 20161–20178.

    Article  Google Scholar 

  • Bullard, E. C. (1939). Heat flow in South Africa. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 173, 474–502.

    Google Scholar 

  • Busby, C., Graettinger, A., López Martínez, M., Medynski, S., Niemi, T., Andrews, C., Bowman, E., Gutierrez, E. P., Henry, M., Lodes, E., Ojeda, J., Rice, J., Andrews, G., & Brown, S. (2020). Volcanic record of the arc-to-rift transition onshore of the Guaymas basin in the Santa Rosalía area, Gulf of California, Baja California. Geosphere, 16(4), 1012–1041.

    Article  Google Scholar 

  • Campbell-Ramirez, H., Elders, W. A., Reyes-Lopez, J., Ramirez-Hernandez, J., Vega-Aguilar, M., & Carreon-Diazconti, C. (1993). Potential for direct-use of geothermal energy for the Mexicali valley, Baja California, Mexico. Geothermal Resources Council Transactions, 17, 3–9.

    Google Scholar 

  • Campos-Enríquez, J. O., Espinosa-Cardeña, J. M., & Oksum, E. (2019). Subduction control on the curie isotherm around the Pacific-North America plate boundary in northwestern Mexico (Gulf of California). Preliminary results. Journal of Volcanology and Geothermal Research, 375, 1–17.

    Article  Google Scholar 

  • Chavez, R. E. (1987). An integrated geophysical study of the geothermal field of Tule Chek, B.C., Mexico. Geothermics, 16(5–6), 529–538.

    Article  Google Scholar 

  • Crowell, A. M., Ochsner, A. T., & Gosnold, W. (2012). Correcting bottom-hole temperatures in the Denver Basin: Colorado and Nebraska. Geothermal Resources Council Transactions, 36, 201–206.

    Google Scholar 

  • Cuevas Leree, J. A. (1985). Analysis of subsidence and thermal history in the Sabinas Basin, northeastern Mexico (University of Arizona. Master thesis), 81pp. http://hdl.handle.net/10150/558018

  • Currie, C. A., & Hyndman, R. D. (2006). The thermal structure of subduction zone back arcs. Journal of Geophysical Research, 111(B8), B08404.

    Article  Google Scholar 

  • Davison, I., & Cunha, T. A. (2017). Allochthonous salt sheet growth: Thermal implications for source rock maturation in the deepwater Burgos Basin and Perdido Fold Belt, Mexico. Interpretation, 5(1), T11–T21.

    Article  Google Scholar 

  • Decker, E. R., & Smithson, S. B. (1975). Heat flow and gravity interpretation across the Rio Grande rift in southern New Mexico and west Texas. Journal of Geophysical Research, 80(17), 2542–2552.

    Article  Google Scholar 

  • Deming, D. (1989). Application of bottom-hole temperature corrections in geothermal studies. Geothermics, 18(5–6), 775–786.

    Article  Google Scholar 

  • Dobson, P. F. (2016). A review of exploration methods for discovering hidden geothermal systems. Geothermal Resources Council Transactions, 40, 695–706.

    Google Scholar 

  • Duffield, W. A., Tilling, R. A., & Canul, R. (1984). Geology of El Chichon volcano, Chiapas, Mexico. Journal of Volcanology and Geothermal Research, 20(1–2), 117–132.

    Article  Google Scholar 

  • Duwiquet, H., Guillou-Frottier, L., Arbaret, L., Guillon, T., Bellanger, M., & Heap, M. J. (2020). Crustal Fault Zone: New geothermal reservoir? Structural dataset and preliminary 3D TH(M) modelling of the Pontgibaud fault zone (French Massif Central). In Proceedings of the 45th workshop on geothermal reservoir engineering, Stanford University, Stanford, California, February 10–12 (pp. 1–11).

  • Duwiquet, H., Guillou-Frottier, L., Arbaret, L., Bellanger, M., Guillon, T., & Heap, M. J. (2021). Crustal Fault Zones (CFZ) as geothermal power systems: A preliminary 3D THM model constrained by a multidisciplinary approach. Geofluids, 2021, 8855632.

    Article  Google Scholar 

  • Duwiquet, H., Magri, F., Lopez, S., Guillon, T., Arbaret, L., Bellanger, M., & Guillou-Frottier, L. (2022). Tectonic regime as a control factor for Crustal Fault Zone (CFZ) geothermal reservoir in an amagmatic system: A 3D dynamic numerical modeling approach. Natural Resources Research, 31, 3155–3172.

    Article  Google Scholar 

  • Eguiluz-de Antuñano, S. (2009). The Yegua Formation: Gas play in the Burgos Basin, Mexico. In C. Bartolini & J. R. Román Ramos (Eds.), Petroleum systems in the southern Gulf of Mexico (pp. 49–77). The American Association of Petroleum Geologists. https://doi.org/10.1306/13191077M902621

    Chapter  Google Scholar 

  • Elders, W. A. (1996). Direct use potential of the Tule Chek geothermal area, B.C., Mexico. Geothermal Resources Council Transactions, 20, 73–80.

    Google Scholar 

  • Epp, D., Grim, P. J., & Langseth, M. G. J. (1970). Heat flow in the Caribbean and Gulf of Mexico. Journal of Geophysical Research, 75(29), 5655–5669.

    Article  Google Scholar 

  • Erickson, A. J., Helsey, C. E., & Simmons, G. (1972). Heat flow and continuous seismic profiles in the Cayman Trough and Yucatan basin. Geological Society of America Bulletin, 83(5), 1241–1260.

    Article  Google Scholar 

  • Espinosa-Cerdeña, J. M., Campos-Enríquez, J. O., & Unsworth, M. (2016). Heat flow pattern at the Chicxulub impact crater, northern Yucatan, Mexico. Journal of Volcanology and Geothermal Research, 311, 135–149.

    Article  Google Scholar 

  • Espinoza-Ojeda, O. M., Prol-Ledesma, R. M., & Iglesias, E. R. (2017a). Continental heat flow data update for México—Constructing a reliable and accurate heat flow map. In: Proceedings of the 42nd workshop on geothermal reservoir engineering, Stanford University, Stanford, California (pp. 1–14).

  • Espinoza-Ojeda, O. M., Prol-Ledesma, R. M., Iglesias, E. R., & Figueroa-Soto, A. (2017b). Update and review of heat flow measurements in Mexico. Energy, 121C, 466–479.

    Article  Google Scholar 

  • Faulds, J. E., & Hinz, N. H. (2015). Favorable tectonic and structural settings of geothermal systems in the Great Basin region, western USA: Proxies for discovering blind geothermal systems. In Proceedings of the world geothermal congress 2015, Melbourne, Australia, 19–25 April (pp. 1–6).

  • Ferrari, L., Tagami, T., Eguchi, M., Orozco-Esquivel, M. T., Petrone, C. M., Jacobo-Albarrán, J., & López-Martínez, M. (2005). Geology, geochronology and tectonic setting of late Cenozoic volcanism along the southwestern Gulf of Mexico: The Eastern Alkaline Province revisited. Journal of Volcanology and Geothermal Research, 146(4), 284–306.

    Article  Google Scholar 

  • Ferrari, L., Valencia-Moreno, M., & Bryan, S. (2007). Magmatism and tectonics of the Sierra Madre Occidental and its relation with the evolution of the western margin of North America. Geological Society of America Special Paper, 422, 1–39.

    Google Scholar 

  • Ferrari, L., Orozco-Esquivel, T., Manea, V., & Manea, M. (2012). The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, 522–523, 122–149.

    Article  Google Scholar 

  • Ferrari, L., López-Martínez, M., Orozco-Esquivel, T., Bryan, S. E., Duque-Trujillo, J., Lonsdale, P., & Solari, L. (2013). Late Oligocene to middle Miocene rifting and synextensional magmatism in the southwestern Sierra Madre Occidental, Mexico: The beginning of the Gulf of California rift. Geosphere, 9(5), 1–40.

    Article  Google Scholar 

  • Ferrari, L., Bonini, M., & Martin-Barajas, A. (2017). From continental to oceanic rifting in the Gulf of California. Tectonophysics, 719–720, 1–3.

    Article  Google Scholar 

  • Fisher, A. T., Giambalvo, E., Sclater, J., Kastner, M., Ransom, B., Weinstein, Y., & Lonsdale, P. (2001). Heat flow, sediment and pore fluid chemistry, and hydrothermal circulation on the east flank of Alarcon Ridge, Gulf of California. Earth and Planetary Science Letters, 188, 521–534.

    Article  Google Scholar 

  • Fletcher, J. M., & Munguía, L. (2000). Active continental rifting in southern Baja California, Mexico: Implications for plate motion partitioning and the transition to seafloor spreading in the Gulf of California. Tectonics, 19(6), 1107–1123.

    Article  Google Scholar 

  • Flores-Márquez, E. L., Chávez-Segura, R., Campos-Enríquez, O., & Pilkington, M. (1999). Preliminary 3-D structural model from the Chicxulub impact crater and its implications in the actual geothermal regime. Trends in Heat, Mass & Momentum Transfer, 5, 19–40.

    Google Scholar 

  • Förster, A., & Merriam, D. F. (1995). A bottom-hole temperature analysis in the American Midcontinent (Kansas): Implications to the applicability of BHTs in geothermal studies. In Proceedings of the World Geothermal Congress, Florence, Italy (pp. 777–782).

  • Förster, A., Merriam, D. F., & Davis, J. C. (1995). Statistical analysis of some bottom-hole temperature (BHT) correction factors for the Cherokee Basin, southeastern Kansas. In Transactions of the 1995 AAPG mid-continent section meeting, Tulsa, Oklahoma.

  • Fuchs, S., Balling, N., & Mathiesen, A. (2020). Deep basin temperature and heat-flow field in Denmark—New insights from borehole analysis and 3D geothermal modelling. Geothermics, 83, 101722.

    Article  Google Scholar 

  • Fulton, P. M., & Saffer, D. M. (2009). Effect of thermal refraction on heat flow near the San Andreas Fault, Parkfield, California. Journal of Geophysical Research, 114(B06408), 1–12.

    Google Scholar 

  • Garrity, C.P., & Soller, D.R. (2009). Database of the Geologic Map of North America; adapted from the map by J.C. Reed, Jr. and others. U.S. Geological Survey Data Series 424. [https://pubs.usgs.gov/ds/424/]. https://doi.org/10.3133/ds424

  • Global Volcanism Program (2013). Volcanoes of the World, v. 4.10.0 (14 May 2021). In Venzke, E. (Ed.), Smithsonian institution. Retrieved May 20, 2021, from https://volcano.si.edu/.

  • González-García, H., Prol-Ledesma, R. M., Amaro-Rodiles, F., & Arango-Galván, C. (2018). Financial and technical feasibility study of the low enthalpy geothermal system “La Jolla”, Baja California Mexico. In Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 12–14 (pp. 1–9).

  • Gray, G. G., Pottorf, R. J., Yurewicz, D. A., Mahon, K. I., Pevear, D. R., & Chuchla, R. J. (2001). Thermal and chronological record of Syn- to Post-Laramide Burial and Exhumation, Sierra Madre Oriental, Mexico. In C. Bartolini, R. T. Buffler, & A. Cantú-Chapa (Eds.), The Western Gulf of Mexico Basin: Tectonics, sedimentary basins, and petroleum systems. American Association of Petroleum Geologists. https://doi.org/10.1306/M75768C7

    Chapter  Google Scholar 

  • Guerrero-Martínez, F. J., Prol-Ledesma, R. M., Carrillo-de la Cruz, J.-L., Rodríguez-Díaz, A. A., & González-Romo, I. A. (2020). A three-dimensional temperature model of the Acoculco caldera complex, Puebla, Mexico, from the Curie isotherm as a boundary condition. Geothermics, 86, 101794.

    Article  Google Scholar 

  • Guillou-Frottier, L., Duwiquet, H., Launay, G., Taillefer, A., Roche, V., & Link, G. (2020). On the morphology and amplitude of 2D and 3D thermal anomalies induced by buoyancy-driven flow within and around fault zones. Solid Earth, 11(4), 1571–1595.

    Article  Google Scholar 

  • Gutiérrez, A., & Aumento, F. (1982). The Los Azufres, Michoacan, Mexico, geothermal field. Journal of Hydrology, 56, 137–162.

    Article  Google Scholar 

  • Gutiérrez-Negrín, L. C. A. (2015). Mexican geothermal plays. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April (pp. 1–9).

  • Gutiérrez-Negrín, L. C. A., Beardsmore, G., Garduño-Monroy, V. H., Espinoza-Ojeda, O. M., Almanza-Álvarez, S., Antriasian, A., & Egan, S. (2020). Field trial of a surface heat flow probe at the Cuitzeo Lake geothermal zone, Mexico. In Proceedings of the World Geothermal Congress 2020+1, Reykjavik, Iceland, April–October 2021 (pp. 1–10).

  • Hamilton, W. (1987). Crustal extension in the Basin and Range Province, southwestern United States. Geological Society, London, Special Publications, 28, 155–176.

    Article  Google Scholar 

  • Henry, C. D., & Aranda-Gomez, J. J. (1992). The real southern Basin and Range: Mid- to late Cenozoic extension in Mexico. Geology, 20(8), 701–704.

    Article  Google Scholar 

  • Henyey, T. L., & Bischoff, J. L. (1973). Tectonic elements of the northern part of the Gulf of California. Geological Society of America Bulletin, 84(1), 315–330.

    Article  Google Scholar 

  • Hernández-Morales, P., & Wurl, J. (2017). Hydrogeochemical characterization of the thermal springs in northeastern of Los Cabos Block, Baja California Sur. México. Enviromental Science and Pollution Research, 24(15), 13184–13202.

    Article  Google Scholar 

  • Hernández-Morales, P., Wurl, J., Green-Ruiz, C., & Morata, D. (2021). Hydrogeochemical characterization as a tool to recognize “Masked Geothermal Waters” in Bahía Concepción. Mexico. Resources, 10(23), 1–24.

    Google Scholar 

  • Iglesias, E. R., Torres, R. J., Martínez-Estrella, I., & Reyes-Picasso, N. (2015). Summary of the 2014 assessment of medium- to low-temperature Mexican geothermal resources. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 1–7.

  • Iglesias, E. R., Torres, R. J., Martínez-Estrella, J. I., Lira-Argüello, R., Paredes-Soberanes, A., Reyes-Picasso, N., Prol, R. M., Espinoza-Ojeda, O. M., López-Blanco, S., & González-Reyes, I. (2016). Potencial teórico SGM en los afloramientos del basamento en México. Geotermia, Revista Mexicana de Geoenergía, 29(2), 6–17.

    Google Scholar 

  • Instituto Nacional de Estadística y Geografía (INEGI). (2021). https://www.inegi.org.mx/.

  • Jácome-Paz, M. P., Pérez-Zárate, D., Prol-Ledesma, R. M., Rodríguez-Díaz, A. A., Estrada-Murillo, A. M., González-Romo, I. A., & Magaña-Torres, E. (2019). Two new geothermal prospects in the Mexican Volcanic Belt: La Escalera and Agua Caliente—Tzitzio geothermal springs, Michoacán, México. Geothermics, 80, 44–55.

    Article  Google Scholar 

  • Jobmann, M., & Clauser, C. (1994). Heat advection versus conduction at the KTB: Possible reasons for vertical variations in heat-flow density. Geophysical Journal International, 119(1), 44–68.

    Article  Google Scholar 

  • Khutorskoy, M. D., Fernandez, R., Kononov, V. I., Polyak, B. G., Matveev, V. G., & Rot, A. A. (1990). Heat flow through the sea bottom around the Yucatan Peninsula. Journal of Geophysical Research, 95(B2), 1223–1237.

    Article  Google Scholar 

  • Lachenbruch, A. H., Sass, J. H., & Morgan, P. (1994). Thermal regime of the southern Basin and Range Province: 2. Implications of heat flow for regional extension and metamorphic core complex. Journal of Geophysical Research, 99(B11), 22121–22133.

    Article  Google Scholar 

  • Landa-Arreguín, J. F. A., Villanueva-Estrada, R. E., Rodríguez-Díaz, A. A., Morales-Arredondo, J. I., Rocha-Miller, R., & Alfonso, P. (2021). Evidence of a new geothermal prospect in the Northern-Central trans-Mexican volcanic belt: Rancho Nuevo, Guanajuato. Mexico. Journal of Iberian Geology, 47(4), 713–732.

    Article  Google Scholar 

  • Larson, R. L., Menard, H. W., & Smith, S. M. (1968). Gulf of California: A result of ocean-floor spreading and transform faulting. Science, 161(3843), 781–784.

    Article  Google Scholar 

  • Lawver, L. A., Sclater, J. G., Henyey, T. L., & Rogers, J. (1973). Heat flow measurements in the southern portion of the Gulf of California. Earth and Planetary Science Letters, 12(2), 198–208.

    Article  Google Scholar 

  • Lawver, L. A., Williams, D. L., & Von Herzen, R. P. (1975). A major geothermal anomaly in the Gulf of California. Nature, 257, 23–28.

    Article  Google Scholar 

  • Lawver, L. A., & Williams, D. L. (1979). Heat flow in the central Gulf of California. Journal of Geophysical Research, 84(B7), 3465–3478.

    Article  Google Scholar 

  • Leal Acosta, M. L., Shumilin, E., & Mirlean, N. (2013). Sediment geochemistry of marine shallow-water hydrothermal vents in Mapachitos, bahía Concepción, Baja California peninsula. Mexico. Revista Mexicana de Ciencias Geológicas, 30(1), 233–245.

    Google Scholar 

  • Leal-Acosta, M. L., & Prol-Ledesma, R. M. (2016). Caracterización geoquímica de las manifestaciones termales intermareales de Bahía Concepción en la Península de Baja California. Boletín de la Sociedad Geológica Mexicana, 68(3), 395–407.

    Article  Google Scholar 

  • Lee, T.-C., & Henyey, T. L. (1975). Heat flow through the southern California borderland. Journal of Geophysical Research, 80(26), 3733–3743.

    Article  Google Scholar 

  • Lonsdale, P., & Becker, K. (1985). Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of Guaymas Basin. Earth and Planetary Science Letters, 73(2), 211–225.

    Article  Google Scholar 

  • López-Sánchez, A., Báncora-Alsina, C., Prol-Ledesma, R. M., & Hiriart, G. (2006). A new geothermal resource in Los Cabos, Baja California Sur, Mexico. In Proceedings of the 28th New Zealand Geothermal Workshop, New Zealand, 1–6.

  • Lucazeau, F. (2019). Analysis and mapping of an updated terrestrial heat flow dataset. Geochemistry, Geophysics, Geosystems, 20(8), 4001–4024.

    Article  Google Scholar 

  • Macías, J. L., & Arce, J. L. (2019). Volcanic activity in Mexico during the Holocene. In N. Torrescano-Valle (Ed.), The Holocene and anthropocene environmental history of Mexico—A paleoecological approach on Mesoamerica (pp. 129–170). Springer.

    Chapter  Google Scholar 

  • Manea, V. C., Manea, M., Kostoglodov, V., & Sewell, G. (2005). Thermo-mechanical model of the mantle wedge in Central Mexican subduction zone and a blob tracing approach for the magma transport. Physics of the Earth and Planetary Interiors, 149(1), 165–186.

    Article  Google Scholar 

  • Mareschal, J. C., & George, B. (1990). Constraints on thermal models of the Basin and Range province. Tectonophysics, 174(1–2), 137–146.

    Article  Google Scholar 

  • Mazzoldi, A., Garduño-Monroy, V. H., Gómez Cortes, J. J., & Guevara Alday, J. A. (2020). Geophysics for geothermal exploration. Directional-derivatives-based computational filters applied to geomagnetic data at Lake Cuitzeo. Mexico. Geofisica Internacional, 59(2), 105–135.

    Article  Google Scholar 

  • Miller, J. C., & Miller, J. N. (2000). Statistics and chemometrics for analytical chemistry (4th ed.). Prentice-Hall.

    Google Scholar 

  • Minshull, T. A., Bartolomé, R., Byrne, S., & Dañobeitia, J. (2005). Low heat flow from young oceanic lithosphere at the Middle America Trench off Mexico. Earth and Planetary Science Letters, 239(1–2), 33–41.

    Article  Google Scholar 

  • Moeck, I. S. (2014). Catalog of geothermal play types based on geologic controls. Renewable and Sustainable Energy Reviews, 37, 867–882.

    Article  Google Scholar 

  • Moeck, I. S., Beardsmore, G., & Harvey, C. C. (2015). Cataloging worldwide developed geothermal systems by geothermal play type. In Proceedings of the world geothermal congress 2015, Melbourne, Australia, 19–25 April (pp. 1–9).

  • Moore, D. G., & Buffington, E. C. (1968). Transform faulting growth of the Gulf of California since the late Pliocene. Science, 161(3847), 1238–1241.

    Article  Google Scholar 

  • Mora-Klepeis, G., & McDowell, F. W. (2004). Late Miocene calc-alkalic volcanism in northwestern Mexico: An expression of rift or subduction-related magmatism? Journal of South American Earth Sciences, 17(4), 297–310.

    Article  Google Scholar 

  • Moran-Zenteno, D. J. (1986). Breve revisión sobre la evolución tectónica de México. Geofisica Internacional, 25(1), 9–38.

    Article  Google Scholar 

  • Nagihara, S., Sclater, J. G., Phillips, J. D., Behrens, E. W., Lewis, T., Lawver, L. A., Nakamura, Y., Garcia-Abdeslem, J., & Maxwell, A. E. (1996). Heat flow in the western abyssal plain of the Gulf of Mexico: Implications for thermal evolution of the old oceanic lithosphere. Journal of Geophysical Research, 101(B2), 2895–2913.

    Article  Google Scholar 

  • Neumann, F., Negrete-Aranda, R., Harris, R. N., Contreras, J., Sclater, J. G., & González-Fernández, A. (2017). Systematic heat flow measurements across the Wagner Basin, northern Gulf of California. Earth and Planetary Science Letters, 479, 340–353.

    Article  Google Scholar 

  • Negrete-Aranda, R., Neumann, F., Contreras, J., Harris, R. N., Spelz, R. M., Zierenberg, R., & Caress, D. W. (2022). Transport of heat by hydrothermal circulation in a young rift setting: Observations from the Auka and JaichMaa Ja’ag’ vent field in the Pescadero Basin, Southern Gulf of California. Journal of Geophysical Research: Solid Earth, 126, e2021JB022300.

    Google Scholar 

  • Norden, B., Förster, A., Behrends, K., Krause, K., Stecken, L., & Meyer, R. (2012). Geological 3-D model of the larger Altensalzwedel area, Germany, for temperature prognosis and reservoir simulation. Enviromental Earth Sciences, 67(2), 511–526.

    Article  Google Scholar 

  • Nourse, J. A., Anderson, T. H., & Silver, L. T. (1994). Tertiary metamorphic core complexes in Sonora, northwestern Mexico. Tectonics, 13(5), 1161–1182.

    Article  Google Scholar 

  • Olvera-García, E., Garduño-Monroy, V. H., Liotta, D., Brogi, A., Bermejo-Santoyo, G., & Guevara-Alday, J. A. (2020a). Neogene-Quaternary normal and transfer faults controlling deep-seated geothermal systems: The case of San Agustín del Maíz (central Trans-Mexican Volcanic Belt, México). Geothermics, 86, 101791.

    Article  Google Scholar 

  • Olvera-García, E., Garduño-Monroy, V. H., Ostrooumov, M., Gaspar-Patarroyo, T. L., & Nájera-Blas, S. M. (2020b). Structural control on hydrothermal upwelling in the Ixtlán de los Hervores geothermal area, Mexico. Journal of Volcanology and Geothermal Research, 399, 106888.

    Article  Google Scholar 

  • Padilla y Sánchez, R. J., Domínguez Trejo, I., López Azcárraga, A. G., Mota Nieto, J., Fuentes Menes, A.O., Rosique Naranjo, F., Germán Castelán, E. A., & Campos Arriola, S. E. (2013). National Autonomous University of Mexico Tectonic Map of Mexico GIS Project. American Association of Petroleum Geologists GIS Open Files series. http://www.datapages.com/AssociatedWebsites/GISOpenFiles.aspx

  • Peacock, S. M. (2003). Thermal structure and metamorphic evolution of subducting slabs. AGU Geophysical Monograph Series, 138, 7–22.

    Google Scholar 

  • Peña-Domínguez, J. C., Negrete-Aranda, R., Neumann, F., Contreras, J., Spelz, R. M., Vega-Ramírez, L. Á., & González-Fernández, A. (2022). Heat flow and 2D multichannel seismic reflection survey of the Devil’s Hole geothermal reservoir in the Wagner basin, northern Gulf of California. Geothermics, 103, 102415.

    Article  Google Scholar 

  • Pilz, J., & Spöck, G. (2008). Why do we need and how should we implement Bayesian kriging methods. Stochastic Environmental Research and Risk Assessment, 22, 621–632.

    Article  Google Scholar 

  • Polyak, B. G., & Smirnov, Y. B. (1968). Relationship between terrestrial heat flow and the tectonics of the continents. Geotectonics, 4, 205–213.

    Google Scholar 

  • Prol-Ledesma, R. M. (1991). Chemical geothermometers applied to the study of thermalized aquifers in Guaymas, Sonora, Mexico: A case history. Journal of Volcanology and Geothermal Research, 46, 49–59.

    Article  Google Scholar 

  • Prol-Ledesma, R. M. (2000). Evaluation of the reconnaissance results in geothermal exploration using GIS. Geothermics, 29(1), 83–103.

    Article  Google Scholar 

  • Prol-Ledesma, R. M., Sugrobov, V. M., Flores, E. L., Juárez, M., & G., Smirnov, Y. B., Gorshkov, A. P., Bondarenko, V. G., Rashidov, V. A. Nedopekin, L. N., & Gavrilov, V. A. (1989). Heat flow variations along the Middle America Trench. Marine Geophysical Researches, 11, 69–76.

  • Prol-Ledesma, R. M., Canet, C., Torres-Vera, M. A., Forrest, M. J., & Armienta, M. A. (2004). Vent fluid chemistry in Bahía Concepción coastal submarine hydrothermal system, Baja California Sur, Mexico. Journal of Volcanology and Geothermal Research, 137, 311–328.

    Article  Google Scholar 

  • Prol-Ledesma, R. M., Torres-Vera, M. A., Rodolfo-Metalpa, R., Ángeles, C., Lechuga Deveze, C. H., Villanueva-Estrada, R. E., Shumilin, E., & Robinson, C. (2013). High heat flow and ocean acidification at a nascent rift in the northern Gulf of California. Nature Communications, 4(1388), 1–7.

    Google Scholar 

  • Prol-Ledesma, R. M., Espinoza-Ojeda, O. M., Iglesias, E. R., & Arango-Galván, C. (2016). Integration of heat flow measurements and estimations in the construction of Mexico’s heat flow map. In Proceedings of the European geothermal congress 2016, Strasbourg, France, 19–24 September (pp. 1–4).

  • Prol-Ledesma, R. M., Carrillo-de la Cruz, J.-L., Torres-Vera, M. A., Membrillo-Abad, A.-S., & Espinoza-Ojeda, O. M. (2018). Heat flow map and geothermal resources in Mexico. Terra Digitalis, 2(2), 1–15.

    Article  Google Scholar 

  • Prol-Ledesma, R. M., & Morán-Zenteno, D. (2019). Heat flow and geothermal provinces in Mexico. Geothermics, 78, 183–200.

    Article  Google Scholar 

  • Prol-Ledesma, R. M., Carrillo de la Cruz, J. L., Torres-Vera, M.-A., & Estradas-Romero, A. (2021). High heat flow at the SW passive margin of the Gulf of California. Terra Nova, 34(3), 155–162.

    Article  Google Scholar 

  • Quintero, M., García, J., & Ocampo, J. D. (2005). Geothermics as an option of alternative source of energy in Baja California, México. In Proceedings of the world geothermal congress, Antalya, Turkey, April 24–29 (p. 5).

  • Reiter, M., Shearer, C., & Edwards, C. L. (1978). Geothermal anomalies along the Rio Grande rift in New Mexico. Geology, 6(2), 85–88.

    Article  Google Scholar 

  • Reiter, M., & Tovar, J. C. (1982). Estimates of terrestrial heat flow in northern Chihuahua, Mexico, based upon petroleum bottom-hole temperatures. Geological Society of America Bulletin, 93(7), 613–624.

    Article  Google Scholar 

  • Reyes-Lopez, J. A., Ramirez-Hernandez, J., Vega-Aguilar, M. E., Elders, W., & Campbell-Ramirez, H. (1993). A detailed gravity survey to evaluate the geothermal resource potential near Mexicali airport, Baja California, Mexico. Geothermal Resources Council Transactions, 17, 161–166.

    Google Scholar 

  • Reyes-Orozco, V. M., Avalos-Tapia, D., García-Tirado, J., Rodríguez-Pineda, E., & Ocampo-Aguilar, F. (2019). Preliminary conceptual model of the Domo San Pedro geothermal field - Western sector of Trans-Mexican Volcanic Belt, Nayarit, Mexico. In Proceedings of the 44th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 11–13 (pp. 1–8).

  • Richards, M., Blackwell, D., Williams, M., Frone, Z., Dingwall, R., Batir, J., & Chickering, C. (2012). Proposed reliability code for heat flow sites. Geothermal Resources Council Transactions, 36, 211–217.

    Google Scholar 

  • Rosales Rodríguez, J. (2007). Evaluación Integral de los flujos de calor en el golfo de México (Master thesis, Instituto Politecnico Nacional), p. 104.

  • Sanchez-Zamora, O., Doguin, P., Couch, R. W., & Ness, G. E. (1991). Magnetic anomalies of the Northern Gulf of California: Structural and thermal interpretations. In J. P. Dauphin & B. R. T. Simoneit (Eds.), The Gulf and Peninsular Province of the Californias (pp. 377–401). American Association of Petroleum Geologists.

    Google Scholar 

  • Šafanda, J., Heidinger, P., Wilhelm, H., & Čermák, V. (2005). Fluid convection observed from temperature logs in the karst formation of the Yucatán Peninsula. Mexico. Journal of Geophysics and Engineering, 2(4), 326–331.

    Article  Google Scholar 

  • Sclater, J. G., Parsons, B., & Jaupart, C. (1981). Oceans and continents: Similarities and differences in the mechanisms of heat loss. Journal of Geophysical Research, 86(B12), 11535–11552.

    Article  Google Scholar 

  • Stein, C. A., & Stein, S. (1992). A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359, 123–129.

    Article  Google Scholar 

  • Sena-Lozoya, E. B., González-Escobar, M., Gómez-Arias, E., González-Fernández, A., & Gómez-Ávila, M. (2020). Seismic exploration survey northeast of the Tres Virgenes Geothermal Field, Baja California Sur, Mexico: A new Geothermal prospect. Geothermics, 84, 101743.

    Article  Google Scholar 

  • Setianto, A., & Triandini, T. (2013). Comparison of Kriging and inverse distance weighted (IDW) interpolation methods in lineament extraction and analysis. Journal of Southeast Asian Applied Geology, 5(1), 21–29.

    Google Scholar 

  • Shann, M. (2020). The sureste basin of Mexico: Its framework, future oil exploration opportunities and key challenges ahead. Geological Society London Special Publications, 504(1), 119–146.

    Article  Google Scholar 

  • Shervais, J. W., Glen, J. M. G., Nielson, D. L., Garg, S., Liberty, L. M., Siler, D., Dobson, P., Gasperikova, E., Sonnenthal, E., Neupane, G., DeAngelo, J., Newell, D. L., Evans, J. P., & Snyder, N. (2017). Geothermal play fairway analysis of the Snake River Plain: Phase 2. Geothermal Resources Council Transactions, 41, 2328–2345.

    Google Scholar 

  • Shervais, J. W., Glen, J. M. G., Siler, D., Liberty, L. M., Nielson, D., Garg, S., Dobson, P., Gasperikova, E., Sonnenthal, E., Newell, D., Evans, J., DeAngelo, J., Peacock, J., Earney, T., Schermerhorn, W., & Neupane, G. (2020). Snyder Play Fairway Analysis in Geothermal Exploration: The Snake River Plain Volcanic Province. In Proceedings of the 45th workshop on geothermal reservoir engineering. Stanford University, Stanford, California, February 10–12, p. SGP-TR-216.

  • Smith, D. L. (1974). Heat flow, radioactive heat generation, and theoretical tectonics for northwestern Mexico. Earth and Planetary Science Letters, 23, 43–52.

    Article  Google Scholar 

  • Smith, D. L., & Jones, R. L. (1979). Thermal anomaly in northern Mexico: An extension of the Rio Grande rift? In R. E. Riecker (Ed.), Rio Grande rift, tectonics and magmatism (pp. 269–278). American Geological Union. https://doi.org/10.1029/sp014p0269

    Chapter  Google Scholar 

  • Smith, D. L., Nuckels, C. E., III., Jones, R. L., & Cook, G. A. (1979). Distribution of heat flow and radioactive heat generation in northern Mexico. Journal of Geophysical Research, 84(B5), 2371–2379.

    Article  Google Scholar 

  • Sourisseau, D., Macías, J. L., García Tenorio, F., Avellán, D. R., Saucedo Girón, R., Bernal, J. P., Arce Saldaña, J. L., & Tinoco Murillo, Z. (2020). New insights into the stratigraphy and 230Th/U geochronology of the post-caldera explosive volcanism of La Primavera caldera, Mexico. Journal of South American Earth Sciences, 103, 102747.

    Article  Google Scholar 

  • Suarez-Vidal, F., Armijo, R., Morgan, G., Bodin, P., & Gastil, R. G. (1991). Framework of recent and active faulting in northern Baja California. In J. P. Dauphin & B. R. Simoneit (Eds.), The Gulf and Peninsular Province of the Californias (pp. 285–300). American Association of Petroleum Geologists.

    Google Scholar 

  • Think GeoEnergy. (2023). Top 10 Geothermal Countries 2022: Installed capacity in Mwe January 2023. https://www.thinkgeoenergy.com/thinkgeoenergys-top-10-geothermal-countries-2022-power-generation-capacity-mw/

  • Valdez Moreno, G., Aranda-Gómez, J. J., & Ortega-Rivera, A. (2011). Geoquímica y petrología del campo volcánico de Ocampo, Coahuila, México. Boletín de la Sociedad Geológica Mexicana, 63(2), 235–252.

    Article  Google Scholar 

  • van Keken, P. E., & King, S. D. (2005). Thermal structure and dynamics of subduction zones: Insights from observations and modeling. Physics of the Earth and Planetary Interiors, 149, 1–6.

    Article  Google Scholar 

  • Vidal, V. M. V., Vidal, F. V., & Isaacs, J. D. (1978). Coastal submarine hydrothermal activity off northern Baja California. Journal of Geophysical Research, 83(B4), 1757–1774.

    Article  Google Scholar 

  • Vidal, V. M. V., Vidal, F. V., & Isaacs, J. D. (1981). Coastal submarine hydrothermal activity off northern Baja California 2. Evolutionary history and isotope geochemistry. Journal of Geophysical Research, 86(B10), 9451–9468.

    Article  Google Scholar 

  • Villanueva-Estrada, R. E., Prol-Ledesma, R. M., Rodríguez-Díaz, A. A., Canet, C., Torres-Alvarado, I. S., & González-Partida, E. (2012). Geochemical processes in an active shallow submarine hydrothermal system, Bahía Concepción, México: Mixing or boiling? International Geology Review, 54(8), 907–919.

    Article  Google Scholar 

  • Vitorello, I., & Pollack, H. N. (1980). On the variation of continental heat flow with age and the thermal evolution of continents. Journal of Geophysical Research, 85(B2), 983–995.

    Article  Google Scholar 

  • Von Herzen, R. P. (1963). Geothermal heat flow in the Gulfs of California and Aden. Science, 140(3572), 1207–1208.

    Article  Google Scholar 

  • Von Herzen, R. P. (1964). Ocean-floor heat-flow measurements west of the United States and Baja California. Marine Geology, 1(3), 225–239.

    Article  Google Scholar 

  • Wilhelm, H., Heidinger, P., Šafanda, J., Čermák, V., Burkhardt, H., & Popov, Y. (2004). High resolution temperature measurements in the borehole Yaxcopoil-1, Mexico. Meteoritics & Planetary Science, 39(6), 813–819.

    Article  Google Scholar 

  • Williams, D. L., Becker, K., Lawver, L. A., & Von Herzen, R. P. (1979). Heat flow at the spreading centers of the Guaymas Basin, Gulf of California. Journal of Geophysical Research, 84(B12), 6757–6769.

    Article  Google Scholar 

  • Wisian, K. W., & Blackwell, D. D. (2004). Numerical modeling of Basin and Range geothermal systems. Geothermics, 33(6), 713–741.

    Article  Google Scholar 

  • Ziagos, J. P., Blackwell, D. D., & Mooser, F. (1985). Heat flow in southern Mexico and the thermal effects of subduction. Journal of Geophysical Research, 90(B7), 5410–5420.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express gratitude to Comisión Federal de Electricidad (CFE) and Petróleos Mexicanos (PEMEX) for providing data. This work received support from projects: PN2015-01-388 “Aprovechamiento de pozos petroleros abandonados/inoperantes como fuente sustentable de energía para sistemas híbridos Geotermia/Concentrador Solar,” from the national program Proyectos de Desarrollo Científico para Atender Problemas Nacionales 2015 (CONACYT); CeMIE-Geo P-01 “Mapas de Gradiente Geotérmico y Flujo de Calor para la República Mexicana.” Thanks to the technicians of INICIT-UMSNH: M.C. Alejandro García Casillas† and M.C. Nancy Magaña García, for their help and support during the collection and processing of thermal data. We are also grateful to Dr. Duwiquet Hugo, M.Sc. Dušan Rajver and two anonymous reviewers for their helpful comments on an earlier version of the paper. Revision and copy editing of the final draft were carried out by Ambar Geerts Zapién.

Funding

Financial support by CONACyT, through projects number PN2015-01–388 and CeMIE-Geo P-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Espinoza-Ojeda.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interests or known competing financial interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinoza-Ojeda, O.M., Prol-Ledesma, R.M. & Muñiz-Jauregui, J.A. Update and Review of Continental Conductive Surface Heat Flow Measurements in México: An Analysis of Deep Boreholes. Nat Resour Res 32, 981–1005 (2023). https://doi.org/10.1007/s11053-023-10173-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10173-9

Keywords

Navigation