Skip to main content

Advertisement

Log in

Storage Potential of Multi-State Fluids in Different Lithotypes of Lignite: An In Situ Water-Gas-Bearing Analysis Based on Nuclear Magnetic Resonance

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The reservoir properties and gas-bearing characteristics of different lithotypes of lignite are different, resulting in complex migration and accumulation laws of methane in lignite. Following systematic collections of samples of different lithotypes from the Erlian Basin, occurrence modes and storage potential of methane in lignite were explored through a series of isothermal adsorption experiments and NMR-based experiments on original water-containing samples. The maceral composition affects the reservoir characteristics and hydrophilicity of different lithotypes of lignite, which control the reservoir’s gas–water competition. Xylite lignite has a strong adsorption capacity, poor development of macropores, and high irreducible water content. Therefore, among various lithotypes of lignite, xylite lignite has the highest occurrence potential for adsorbed gas and soluble gas and the lowest potential for free gas. Notably, the soluble gas in lignite is never dominant in the gas composition. Therefore, gas in xylite lignite is mainly adsorbed. Due to carbonization, the fusain-rich lignite retains many unexpanded primary plant tissue structures and has developed macropore spaces and weak hydrophilicity. Therefore, the fusain-rich lignite has high free fluid porosity and the highest free gas storage potential. When the burial depth of the matrix lignite is less than 500 m, the methane is mainly adsorbed. The storage potential of free gas gradually exceeds that of adsorbed gas as the burial depth increases. There are apparent differences in the occurrence states and accumulation patterns of methane in different lithotypes of lignite. Clarifying methane’s occurrence and storage potential in different lithotypes of lignite are significant for evaluating methane resources and exploring the methane enrichment model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Bustin, R. M., & Clarkson, C. R. (1999). Free gas storage in matrix porosity: a potentially significant coalbed resource in low rank coals. In Proceedings International Coalbed Methane Symposium (pp. 197–214).

  • Charrière, D., & Behra, P. (2010). Water sorption on coals. Journal of Colloid and Interface Science, 344(2), 460–467.

    Article  Google Scholar 

  • Chen, D., Pan, Z., Liu, J., & Connell, L. D. (2012). Modeling and simulation of moisture effect on gas storage and transport in coal seams. Energy and Fuels, 26(3), 1695–1706.

    Article  Google Scholar 

  • Crosdale, P. J., Moore, T. A., & Mares, T. E. (2008). Influence of moisture content and temperature on methane adsorption isotherm analysis for coals from a low-rank, biogenically-sourced gas reservoir. International Journal of Coal Geology, 76(1–2), 166–174.

    Article  Google Scholar 

  • Day, S., Sakurovs, R., & Weir, S. (2008). Supercritical gas sorption on moist coals. International Journal of Coal Geology, 74(3–4), 203–214.

    Article  Google Scholar 

  • Fu, H., Yan, D., Su, X., Wang, J., Li, Q., Li, X., Zhao, W., Zhang, L., Wang, X., & Li, Y. (2022). Biodegradation of early thermogenic gas and generation of secondary microbial gas in the Tieliekedong region of the northern Tarim Basin, NW China. International Journal of Coal Geology, 261, 104075.

    Article  Google Scholar 

  • Fu, H., Yan, D., Yang, S., Wang, X., Wang, G., Zhuang, X., Zhang, L., Li, G., Chen, X., & Pan, Z. (2021). A study of the gas–water characteristics and their implications for the coalbed methane accumulation modes in the Southern Junggar Basin, China. AAPG Bulletin, 105(1), 189–221.

    Article  Google Scholar 

  • Han, L., Shen, J., Wang, J., & Shabbiri, K. (2021). Characteristics of pore evolution and its maceral contributions in the huolinhe lignite during coal pyrolysis. Natural Resources Research, 30(3), 2195–2210.

    Article  Google Scholar 

  • Jian, S., Lei, D., Yong, Q., Peng, Y., Xuehai, F., & Gang, C. (2015). Three-phase gas content model of deep low-rank coals and its implication for CBM exploration: A case study from the Jurassic coal in the Junggar Basin. Natural Gas Industry, 35(03), 30–35.

    Google Scholar 

  • Li, C., Yang, Z., Chen, J., & Sun, H. (2022). Prediction of critical desorption pressure of coalbed methane in multi-coal seams reservoir of medium and high coal rank: A case study of eastern Yunnan and western Guizhou, China. Natural Resources Research, 31(3), 1443–1461.

    Article  Google Scholar 

  • Li, G., Qin, Y., Yao, Z., & Hu, W. (2021). Differentiation of carbon isotope composition and stratabound mechanism of gas desorption in shallow-buried low-rank multiple coal seams: Case study of well DE-A, Northeast Inner Mongolia. Natural Resources Research, 30(2), 1511–1526.

    Article  Google Scholar 

  • Li, X., Fu, X., Liu, A., An, H., Wang, G., Yang, X., Wang, L., & Wang, H. (2016). Methane adsorption characteristics and adsorbed gas content of low-rank coal in China. Energy and Fuels, 30(5), 3840–3848.

    Article  Google Scholar 

  • Lievens, C., Ci, D., Bai, Y., Ma, L., Zhang, R., Chen, J. Y., Gai, Q., Long, Y., & Guo, X. (2013). A study of slow pyrolysis of one low rank coal via pyrolysis-GC/MS. Fuel Processing Technology, 116, 85–93.

    Article  Google Scholar 

  • Liu, A., Fu, X., Wang, K., An, H., & Wang, G. (2013). Investigation of coalbed methane potential in low-rank coal reservoirs—Free and soluble gas contents. Fuel, 112, 14–22.

    Article  Google Scholar 

  • Mallick, N., & Prabu, V. (2017). Energy analysis on Coalbed Methane (CBM) coupled power systems. Journal of CO2 Utilization, 19, 16–27.

    Article  Google Scholar 

  • McCutcheon, A. L., Barton, W. A., & Wilson, M. A. (2003). Characterization of water adsorbed on bituminous coals. Energy and Fuels, 17(1), 107–112. https://doi.org/10.1021/ef020101d

    Article  Google Scholar 

  • Obasi, C., & Pashin, J. (2018). Effects of internal gradients on pore-size distribution in shale. AAPG Bulletin, 102(9), 1825–1840.

    Article  Google Scholar 

  • Ou, C., Li, C., Zhi, D., Xue, L., & Yang, S. (2018). Coupling accumulation model with gas-bearing features to evaluate low-rank coalbed methane resource potential in the southern Junggar Basin. China. AAPG Bulletin, 102(1), 153–174.

    Article  Google Scholar 

  • Pratt, T. J., Mavor, M. J., & Debruyn, R. P. (1999). Coal gas resource and production potential of subbituminous coal in the powder river basin. In Society of Petroleum Engineers - SPE Rocky Mountain Regional Meeting 1999, RMR 1999.

  • Ren, P., Wang, Q., Tang, D., Xu, H., & Chen, S. (2022). In situ stress-coal structure relationship and its influence on hydraulic fracturing: A case study in Zhengzhuang area in Qinshui Basin, China. Natural Resources Research, 31(3), 1621–1646.

    Article  Google Scholar 

  • Ross, H. E., Hagin, P., & Zoback, M. D. (2009). CO2 storage and enhanced coalbed methane recovery: Reservoir characterization and fluid flow simulations of the Big George coal, Powder River Basin, Wyoming, USA. International Journal of Greenhouse Gas Control, 3(6), 773–786.

    Article  Google Scholar 

  • Sampath, K. H. S. M., Perera, M. S. A., Elsworth, D., Ranjith, P. G., Matthai, S. K., & Rathnaweera, T. (2018). Experimental investigation on the mechanical behavior of Victorian brown coal under brine saturation. Energy and Fuels, 32(5), 5799–5811.

    Article  Google Scholar 

  • Shi, J., Jia, Y., Wu, J., Xu, F., Sun, Z., Liu, C., Meng, Y., Xiong, X., & Liu, C. (2021a). Dynamic performance prediction of coalbed methane wells under the control of bottom-hole pressure and casing pressure. Journal of Petroleum Science and Engineering, 196, 107799.

    Article  Google Scholar 

  • Shi, J., Wu, J., Lv, M., Li, Q., Liu, C., Zhang, T., Sun, Z., He, M., & Li, X. (2021b). A new straight-line reserve evaluation method for water bearing gas reservoirs with high water production rate. Journal of Petroleum Science and Engineering, 196, 107808.

    Article  Google Scholar 

  • Taylor, G. H., Teichmüller, M., Davis, A., Diessel, C. F. K., Littke, R., & Robert, P. (1998). Organic petrology.

  • Wang, K. (2010). Physical simulation and numerical simulation of adsorbed state, soluble state and free state gas volume in low rank coal reservoir. China Uni. Min. Techno.

  • Xin, F., Xu, H., Tang, D., & Cao, L. (2019a). Properties of lignite and key factors determining the methane adsorption capacity of lignite: New insights into the effects of interlayer spacing on adsorption capacity. Fuel Processing Technology, 196, 106181.

    Article  Google Scholar 

  • Xin, F., Xu, H., Tang, D., & Cao, L. (2020a). An improved method to determine accurate porosity of low-rank coals by nuclear magnetic resonance. Fuel Processing Technology, 205(February), 106435.

    Article  Google Scholar 

  • Xin, F., Xu, H., Tang, D., Chen, Y., Cao, L., & Yuan, Y. (2020b). Experimental study on the change of reservoir characteristics of different lithotypes of lignite after dehydration and improvement of seepage capacity. Fuel, 277, 118196.

    Article  Google Scholar 

  • Xin, F., Xu, H., Tang, D., Liu, D., & Cao, C. (2021). Problems in pore property testing of lignite: Analysis and correction. International Journal of Coal Geology, 245, 103829.

    Article  Google Scholar 

  • Xin, F., Xu, H., Tang, D., Yang, J., Chen, Y., Cao, L., & Qu, H. (2019b). Pore structure evolution of low-rank coal in China. International Journal of Coal Geology, 205, 126–139. https://doi.org/10.1016/j.coal.2019.02.013

    Article  Google Scholar 

  • Xu, H., Tang, D., Chen, Y., Ming, Y., Chen, X., Qu, H., Yuan, Y., Li, S., & Tao, S. (2018). Effective porosity in lignite using kerosene with low-field nuclear magnetic resonance. Fuel, 213, 158–163.

    Article  Google Scholar 

  • Yang, Z., Qin, Z., Wang, G., & Li, C. (2021). Environmental effects of water product from coalbed methane wells: A case study of the Songhe well group, western Guizhou, China. Natural Resources Research, 30(5), 3747–3760.

    Article  Google Scholar 

  • Zhang, Z., Qin, Y., You, Z., & Yang, Z. (2021). Distribution characteristics of in situ stress field and vertical development unit division of CBM in western Guizhou. China. Natural Resources Research, 30(5), 3659–3671.

    Article  Google Scholar 

  • Zhao, J., Xu, H., Tang, D., Mathews, J. P., Li, S., & Tao, S. (2016). Coal seam porosity and fracture heterogeneity of macrolithotypes in the Hancheng Block, eastern margin, Ordos Basin, China. International Journal of Coal Geology, 159, 18–29.

    Article  Google Scholar 

  • Zhao, J., Shen, J., Qin, Y., Wang, J., Zhao, J., & Li, C. (2021). Coal petrology effect on nanopore structure of lignite: Case study of no. 5 coal seam, Shengli Coalfield, Erlian Basin, China. Natural Resources Research, 30(1), 681–695.

    Article  Google Scholar 

  • Zhong, J., Meng, Y., Liu, Z., & Zeng, F. (2022). A novel method for the intelligent recognition of lattice fringes in coal HRTEM images based on semantic segmentation and fuzzy superpixels. ACS Omega, 7(17), 15037–15047.

    Article  Google Scholar 

  • Zhu, J. F., Liu, J. Z., Yang, Y. M., Cheng, J., Zhou, J. H., & Cen, K. F. (2016). Fractal characteristics of pore structures in 13 coal specimens: Relationship among fractal dimension, pore structure parameter, and slurry ability of coal. Fuel Processing Technology, 149, 256–267.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from the Postdoctoral Research Foundation of China (2022M723502), and the National Natural Science Foundation of China (42172188), the Fundamental Research Funds for the Central Universities of China. We sincerely thank the editor and all reviewers for the valuable feedback that we have used to improve the quality of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Xu.

Ethics declarations

Conflict of Interest

We declare that no conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, F., Xu, H., Tang, D. et al. Storage Potential of Multi-State Fluids in Different Lithotypes of Lignite: An In Situ Water-Gas-Bearing Analysis Based on Nuclear Magnetic Resonance. Nat Resour Res 32, 1199–1214 (2023). https://doi.org/10.1007/s11053-023-10172-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10172-w

Keywords

Navigation