Skip to main content
Log in

Evolution of the Surface Area of Critical Lagoon Systems in the Salar de Atacama

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The Salar de Atacama in northern Chile hosts the biggest lithium reserves globally. However, concerns have arisen regarding the environmental impact of lithium extraction on its basin; in particular, the possible drought of its lagoons that sustain unique natural ecosystems. This investigation implemented an image processing and statistical methodology to assess the area evolution and dynamic behavior of these main water bodies between 1986 and 2018. Results showed that these lagoon systems have not presented significant changes despite increasing lithium production, even for the years of large brine extraction. The analysis indicated that the total surface area of the lagoons varied within a restricted range at 95% confidence level: on average, of the total area covered by these systems 0.03% could have been lost or 0.01% could have been gained per year. Moreover, a multivariate analysis indicated that brine extraction did not have a negative impact on the evolution of the surface areas of the lagoons during the last three decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • NASA, (2020). Daily insolation parameters. figshare https://data.giss.nasa.gov/modelE/ar5plots/srlocat.html.

  • SQM, (2021). Meteorología. figshare https://www.sqmsenlinea.com/meteorology/231.

  • USGS, (2020). Landsat missions, landsat data access. figshare https://www.usgs.gov/core-science-systems/nli/landsat/landsat-data-access?qt-science_support_page_related_con=0#qt-science_support_page_related_con.

  • Aguilar, P., Acosta, E., Dorador, C., & Sommaruga, R. (2016). Large differences in bacterial community composition among three nearby extreme waterbodies of the high Andean plateau. Frontiers in Microbiology, 7, 976.

    Google Scholar 

  • Ali, M. I., Dirawan, G. D., Hasim, A. H., & Abidin, M. R. (2019). Detection of changes in surface water bodies urban area with NDWI and MNDWI methods. International Journal on Advanced Science Engineering Information and Technology, 9, 946–951.

    Article  Google Scholar 

  • Alimujiang, A., & Jiang, P. (2020). Synergy and co-benefits of reducing CO2 and air pollutant emissions by promoting electric vehicles—a case of Shanghai. Energy for Sustainable Development, 55, 181–189.

    Article  Google Scholar 

  • Anderson, M., Low, R., & Foot, S. (2002). Sustainable groundwater development in arid, high Andean basins. Geological Society, London, Special Publications, 193, 133–144.

    Article  Google Scholar 

  • Araya-López, R. A., Lopatin, J., Fassnacht, F. E., & Hernández, H. J. (2018). Monitoring Andean high altitude wetlands in central Chile with seasonal optical data: A comparison between Worldview-2 and Sentinel-2 imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 213–224.

    Article  Google Scholar 

  • Baspineiro, C., Franco, J., & Flexer, V. (2020). Potential water recovery during lithium mining from high salinity brines. Science of the Total Environment, 720, 137523.

    Article  Google Scholar 

  • Bobst, A. L., Lowenstein, T. K., Jordan, T. E., Godfrey, L. V., Ku, T., & Luo, S. (2001). A 106ka paleoclimate record from drill core of the Salar de Atacama, northern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology, 173, 21–42.

    Article  Google Scholar 

  • Bustos-Gallardo, B., Bridge, G., & Prieto, M. (2021). Harvesting lithium: Water, brine and the industrial dynamics of production in the Salar de Atacama. Geoforum, 119, 177–189.

    Article  Google Scholar 

  • Chávez, R. O., Moreira-Muñoz, A., Galleguillos, M., Olea, M., Aguayo, J., Latín, A., Aguilera-Betti, I., Muñoz, A. A., & Manríquez, H. (2019). GIMMS NDVI time series reveal the extent, duration, and intensity of “blooming desert” events in the hyper-arid Atacama Desert, Northern Chile. International Journal of Applied Earth Observation and Geoinformation, 76, 193–203.

    Article  Google Scholar 

  • Collazo Urrutia, S. A. (2017). Mechanical evaporation of lithium brine. Universidad Nacional Andrés Bello.

    Google Scholar 

  • De la Fuente, A., Meruane, C., & Suárez, F. (2021). Long-term spatiotemporal variability in high Andean wetlands in northern Chile. Science of The Total Environment, 756, 143830.

    Article  Google Scholar 

  • Dorador, C., Fink, P., Hengst, M., Icaza, G., Villalobos, A. S., Vejar, D., Meneses, D., Zadjelovic, V., Burmann, L., Moelzner, J., & Harrod, C. (2018). Microbial community composition and trhopic role along a marked salinity gradient in Laguna Puilar, Salar de Atacama, Chile. Antonie van Leeuwenhoek, 111, 1361–1374.

    Article  Google Scholar 

  • Farías, M. E., Contreras, M., Rasuk, M. C., Kurth, D., Flores, M. R., Poiré, D. G., Novoa, F., & Visscher, P. T. (2014). Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialtes in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles, 18, 311–329.

    Article  Google Scholar 

  • Farías, M. E., Rasuk, M. C., Gallagher, K. L., Contreras, M., Kurth, D., Fernández, A. B., Poiré, D., Novoa, F., & Visscher, P. T. (2017). Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile. Plos One, 12, e0186867.

    Article  Google Scholar 

  • Flexer, V., Baspineiro, C., & Galli, C. (2018). Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Science of the Total Environment, 639, 1188–1204.

    Article  Google Scholar 

  • Gajardo, G., & Redón, S. (2019). Andean hypersaline lakes in the Atacama Desert, northern Chile: Between lithium exploitation and unique biodiversity conservation. Conservation Science and Practice, 1, e94.

    Article  Google Scholar 

  • Gao, B. C. (1996). NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58, 257–266.

    Article  Google Scholar 

  • Garcés, I., & Alvarez, G. (2020). Water Mining and Extractivism of The Salar De Atacama, Chile. WIT Transactions on Ecology and the Environment, 245, 189–199.

    Article  Google Scholar 

  • Garret, D. (2004). Handbook of lithium and natural calcium chloride. Elsevier Academic Press.

    Google Scholar 

  • Gutiérrez, J. S., Navedo, J. G., & Soriano-Redondo, A. (2018). Chilean Atacama site imperilled by lithium mining. Nature, 557, 492.

    Article  Google Scholar 

  • Habib, K., Hansdóttir, S. T., & Habib, H. (2020). Critical metals for electromobility: Global demand scenarios for passenger vehicles, 2015–2050. Resources, Conservation & Recycling, 154, 104603.

    Article  Google Scholar 

  • Han-Qiu, X. U. (2005). A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of Remote Sensing, 5, 589–595.

    Google Scholar 

  • Jerez-Henríquez, B. (2018). Socio-environmental impact of the lithium extraction in the basins of the high-Andes salt flats of the southern cone. Observatorio de Conflictos Mineros de América Latina, Santiago (in Spanish).

  • Ji, L., Zhang, L., & Wylie, B. (2009). Analysis of dynamic thresholds for the normalized difference water index. Photogrammetric Engineering & Remote Sensing, 75, 1307–1317.

    Article  Google Scholar 

  • Kampf, S. K., & Tyler, S. W. (2006). Spatial characterization of land surface energy fluxes and uncertainty estimation at the Salar de Atacama, Northern Chile. Advances in Water Resources, 29, 336–354.

    Article  Google Scholar 

  • Kampf, S. K., Tyler, S. W., Ortiz, C., Muñoz, J. F., & Adkins, P. L. (2005). Evaporation and land surface energy budget at the Salar de Atacama, Northern Chile. Journal of Hydrology, 310, 236–252.

    Article  Google Scholar 

  • Kesler, S., Gruber, P., Medina, P., Keoleian, G., Everson, M., & Wallington, T. (2012). Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geology Reviews, 48, 55–69.

    Article  Google Scholar 

  • Liu, W., Agusdinata, D. B., & Myint, S. W. (2019). Spatiotemporal patterns of lithium mining and environmental degradation in the Atacama Salt Flat, Chile. International Journal of Applied Earth Observation and Geoinformation, 80, 145–156.

    Article  Google Scholar 

  • Llagostera, A. (2004). The ancient inhabitants of the Salar de Atacama, Atacameña Prehistory. Editorial Pehuén, Santiago (in Spanish).

  • Marazuela, M. A., Vázquez-Suñé, E., Ayora, C., & García-Gil, A. (2020). Towards more sustainable brine extraction in salt flats: Learning from the Salar de Atacama. Science of the Total Environment, 703, 135605.

    Article  Google Scholar 

  • Marazuela, M. A., Vázquez-Suñé, E., Ayora, C., García-Gil, A., & Palma, T. (2019a). Hydrodynamics of salt flat basins: The Salar de Atacama example. Science of the Total Environment, 651, 668–683.

    Article  Google Scholar 

  • Marazuela, M. A., Vázquez-Suñé, E., Ayora, C., García-Gil, A., & Palma, T. (2019b). The effect of brine pumping on the natural hydrodynamics of the Salar de Atacama: The damping capacity of salt flats. Science of the Total Environment, 654, 1118–1131.

    Article  Google Scholar 

  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17, 1425–1432.

    Article  Google Scholar 

  • Munk, L. A., Boutt, D., Moran, B. J., McKnight, S., & Jenckes, J. (2020). Hydrogeologic and geochemical distinctions in salar freshwater brine systems. Geochemistry, Geophysics, Geosystems, 22, e2020GC009345.

    Google Scholar 

  • Munk, L., Hynek, S., Bradley, D., Boutt, D., Labay, K., & Jochens, H. (2016). Lithium brines: A global perspective. Reviews in Economic Geology, 18, 339–365.

    Google Scholar 

  • Ortiz, C., Aravena, R., Briones, E., Suárez, F., Tore, C., & Muñoz, J. F. (2014). Sources of surface water for the Soncor ecosystem, Salar de Atacama basin, northern Chile. Hydrological Sciences Journal, 59, 336–350.

    Article  Google Scholar 

  • Ouma, Y., & Tateishi, R. (2006). A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: An empirical analysis using Landsat TM and ETM+ data. International Journal of Remote Sensing, 27, 3153–3181.

    Article  Google Scholar 

  • Pérez, V., Hengst, M., Kurte, L., Dorador, C., Jeffrey, W. H., Wattiez, R., Molina, V., & Matallana-Surget, S. (2017). Bacterial survival under extreme UV radiation: a comparative proteomics study of Rhodobacter sp., isolated from high altitude wetlands in Chile. Frontiers in Microbiology, 8, 1173.

    Article  Google Scholar 

  • Rokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water feature extraction and change detection using multitemporal Landsat imagery. Remote Sensing, 6, 4173–4189.

    Article  Google Scholar 

  • Le Roux, J.P. (2018). Palaeoclimatological and sedimentological changes during the Pleistocene-Holocene in the Salar de Atacama. InvestSed Associates, Santiago (in Spanish).

  • Salas, J., Guimerà, J., Cornellà, O., Aravena, R., Guzmán, E., Tore, C., & Moreno, R. (2010). Hidrogeología del sistema lagunar del margen este del Salar de Atacama (Chile). Boletín Geológico Minero, 121, 357–372.

    Google Scholar 

  • Sarp, G., & Ozcelik, M. (2017). Water body extraction and change detection using time series: A case study from Lake Burdur, Turkey. Journal of Taibah University for Science, 11, 381–391.

    Article  Google Scholar 

  • Scott, S., Dorador, C., Oyanedel, J. P., Tobar, I., Hengst, M., Maya, G., & Vila, I. (2015). Microbial diversity and trophic components of two high altitude wetlands of the Chilean Altiplano. Gayana, 79, 45–56.

    Google Scholar 

  • Seaton, D., Dube, T., & Mazvimavi, D. (2020). Use of multi-temporal satellite data for monitoring pool surface areas occurring in non-perennial rivers in semi-arid environments of the Western Cape, South Africa. Isprs Journal of Photogrammetry and Remote Sensing, 167, 375–384.

    Article  Google Scholar 

  • Sheng, Y., Song, C., Wang, J., Lyons, E., Knox, B., Cox, J. S., & Gao, F. (2016). Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery. Remote Sensing of Environment, 185, 129–141.

    Article  Google Scholar 

  • Singh, K.V., Setia, R., Sahoo, S., Prasad, A. & Pateriya, B. (2015). Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto International, 30, 650–661. https://doi.org/10.1080/10106049.2014.965757

    Article  Google Scholar 

  • Soler, J. M., Salazar, P. A., Navarro, J. S., Francisco, L., & Sanz, A. (2013). Preliminary Hydrochemical Characterization of the Lagoons of “Los Flamencos” National Reserve (Salar de Atacama, Chile). Macla: Revista de la Sociedad Española de Mineralogía, 17, 67–68.

    Google Scholar 

  • Sovacool, B. K., Ali, S. H., Bazilian, M., Radley, B., Nemery, B., Okatz, J., & Mulvaney, D. (2020). Sustainable minerals and metals for a low-carbon future. Science, 367, 30–33.

    Article  Google Scholar 

  • SQM, (2005). Environmental impact assessment (EIA). Preprint at: https://seia.sea.gob.cl/expediente/expedientesEvaluacion.php?modo=ficha&id_expediente=1040282.

  • SQM, (2019). Datos de reconocimiento en terreno de superficies lacustres – campaña abril 2019. SQM.

  • SQM, (2020). Estudio de Impacto Ambiental “Proyecto actualización plan de alerta temprana y seguimiento ambiental, Salar de Atacama”. SQM.

  • Tejeda, I., Cienfuegos, R., Muñoz, J. F., & Durán, M. (2003). Numerical modeling of saline intrusion in Salar de Atacama. Journal of Hydrologic Engineering, 8, 25–34.

    Article  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B, 58, 267–288.

    Google Scholar 

  • Varunan, T., & Shanmugam, P. (2018). Use of Landsat 8 data for characterizing dynamic changes in physical and acoustical properties of coastal lagoon and estuarine waters. Advances in Space Research, 62, 2393–2417.

    Article  Google Scholar 

  • Vásquez, C. A., Ortiz, C., Suárez, F., & Muñoz, J. F. (2013). Modeling flow and reactive transport to explain mineral zoning in the Atacama salt flat aquifer, Chile. Journal of Hydrology, 490, 114–125.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Joaquín Jara.

Ethics declarations

Conflict of Interest

The authors declare that this research was partially funded by SQM. José Joaquín Jara declares that he does not have any competing financial or any other interest in this research and he did not received support from any company or organization to finance his participation in this research.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignacio Guzmán, J., Retamal, C., Faúndez, P. et al. Evolution of the Surface Area of Critical Lagoon Systems in the Salar de Atacama. Nat Resour Res 31, 2571–2588 (2022). https://doi.org/10.1007/s11053-022-10070-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10070-7

Keywords

Navigation