Skip to main content
Log in

Data clustering based on quantum synchronization

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

There exists a specific class of methods for data clustering problem inspired by synchronization of coupled oscillators. This approach requires an extension of the classical Kuramoto model to higher dimensions. In this paper, we propose a novel method based on so-called non-Abelian Kuramoto models. These models provide a natural extension of the classical Kuramoto model to the case of abstract particles (called Kuramoto–Lohe oscillators) evolving on matrix Lie groups U(n). We focus on the particular case \(n=2\), yielding the system of matrix ODE’s on SU(2) with the group manifold \(S^3\). This choice implies restriction on the dimension of multivariate data: in our simulations we investigate data sets where data are represented as vectors in \({\mathbb {R}}^k\), with \(k \le 6\). In our approach each object corresponds to one Kuramoto–Lohe oscillator on \(S^3\) and the data are encoded into matrices of their intrinsic frequencies. We assume global (all-to-all) coupling, which allows to greatly reduce computational cost. One important advantage of this approach is that it can be naturally adapted to clustering of multivariate functional data. We present the simulation results for several illustrative data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arenas A, Díaz-Guilera A, Pérez-Vicente CJ (2006) Synchronization reveals topological scales in complex networks. Phys Rev Lett 96(11):114102

    Article  Google Scholar 

  • Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C (2008) Synchronization in complex networks. Phys Rep 469(3):93–153

    Article  MathSciNet  Google Scholar 

  • Central Intelligence Agency (2017) The World Factbook. https://www.cia.gov/library/publications/the-world-factbook

  • Jaćimović V, Crnkić A (2017) Characterizing complex networks through statistics of Möbius transformations. Physica D Nonlinear Phenom 345:56–61

    Article  Google Scholar 

  • Jacques J, Preda C (2012) Clustering multivariate functional data. In: COMPSTAT 2012, Cyprus, pp 353–366

  • Jacques J, Preda C (2014) Model-based clustering for multivariate functional data. Comput Stat Data Anal 71:92–106

    Article  MathSciNet  Google Scholar 

  • Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recognit Lett 31(8):651–666

    Article  Google Scholar 

  • Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv (CSUR) 31(3):264–323

    Article  Google Scholar 

  • Kuramoto Y (1975) Self-entrainment of a population of coupled nonlinear oscillators. In: Proceedings of international symposium on mathematical problems in theoretical physics, pp 420–422

  • Lohe MA (2009) Non-Abelian Kuramoto models and synchronization. J Phys A Math Theor 42(39):395101

    Article  MathSciNet  Google Scholar 

  • Lohe MA (2010) Quantum synchronization over quantum networks. J Phys A Math Theor 43(46):465301

    Article  MathSciNet  Google Scholar 

  • Miyano T, Tsutsui T (2007) Data synchronization in a network of coupled phase oscillators. Phys Rev Lett 98(2):024102

    Article  Google Scholar 

  • Novikov AV, Benderskaya EN (2014) Oscillatory neural networks based on the Kuramoto model for cluster analysis. Pattern Recognit Image Anal 24(3):365–371

    Article  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis. Springer Series in Statistics. Springer, New York

    Book  Google Scholar 

  • Rodrigues FA, Peron TKDM, Ji P, Kurths J (2016) The Kuramoto model in complex networks. Phys Rep 610:1–98

    Article  MathSciNet  Google Scholar 

  • Shao J, He X, Böhm C, Yang Q, Plant C (2013) Synchronization-inspired partitioning and hierarchical clustering. IEEE Trans Knowl Data Eng 25(4):893–905

    Article  Google Scholar 

  • Wikipedia contributors (2017,) Iris flower data set—Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Iris_flower_data_set&oldid=815019107

  • Yamamoto M (2012) Clustering of functional data in a low-dimensional subspace. Adv Data Anal Classif 6(3):219–247

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aladin Crnkić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crnkić, A., Jaćimović, V. Data clustering based on quantum synchronization. Nat Comput 18, 907–911 (2019). https://doi.org/10.1007/s11047-018-9720-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-018-9720-z

Keywords

Navigation