Skip to main content
Log in

Influence of cell mechanics and proliferation on the buckling of simulated tissues using a vertex model

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Tissue folding is a frequently observed phenomenon, from the cerebral cortex gyrification, to the gut villi formation and even the crocodile head scales development. Although its causes are not yet well understood, some hypotheses suggest that it is related to the physical properties of the tissue and its growth under mechanical constraints. In order to study the underlying mechanisms affecting tissue folding, experimental models are developed where epithelium monolayers are cultured inside hydrogel microcapsules. In this work, we use a 2D vertex model of circular cross-sections of cell monolayers to investigate how cell mechanical properties and proliferation affect the shape of in-silico growing tissues. We observe that increasing the cells’ contractility and the intercellular adhesion reduces tissue buckling. This is found to coincide with smaller and thicker cross-sections that are characterized by shorter relaxation times following cell division. Finally, we show that the smooth or folded morphology of the simulated monolayers also depends on the combination of the cell proliferation rate and the tissue size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. \(A^0\) of a cell \(\alpha\) is increased each 3000 iterations by \(\Delta {A^0} = {0.1\cdot A_{\alpha }\text {(before mitosis)}}\), which is enough time for a cell to reach equilibrium between each \(A^0\) increment in our simulations, with a time step \(\delta t\) and a damping \(\eta\) parameters equal to \(10^{-1}\) sec and 1 sec\(^{-1}\). The choice of the cell growth rate corresponds to the implementation of a multi-scale simulation technique (combining the relaxation time scale in the order of minutes and the proliferation time scale in the order of 10–20 h), and does not correspond to biologically realistic growth times. We artificially accelerate the cell growth to speed up the execution of our simulations. However, the quasi-static growth of cells insures that we get the same results as those we would have obtained with a slower and more biologically realistic cell growth.

  2. As long as the tissue does not have the time to return to its equilibrium state between two cell divisions.

References

  • Alessandri K, Sarangi BR, Gurchenkov VV, Sinha B, Kiessling TR, Fetler L, Rico F, Scheuring S, Lamaze C, Simon A, Geraldo S, Vignjević D, Domejean H, Rolland L, Funfak A, Bibette J, Bremond N, Nassoy P (2013) Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro. Proc Natl Acad Sci 110(37):14843. doi:10.1073/pnas.1309482110

    Article  Google Scholar 

  • Alessandri K, Feyeux M, Gurchenkov B, Delgado C, Trushko A, Krause KH, Vignjević D, Nassoy P, Roux A (2016) A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human neuronal stem cells (hNSC). Lab Chip 16(9):1593. doi:10.1039/C6LC00133E

    Article  Google Scholar 

  • Aliee M, Röper JC, Landsberg KP, Pentzold C, Widmann TJ, Jülicher F, Dahmann C (2012) Physical mechanisms shaping the Drosophila dorsoventral compartment boundary. Curr Biol 22(11):967. doi:10.1016/j.cub.2012.03.070

    Article  Google Scholar 

  • Alt S, Ganguly P, Salbreux G (2017) Vertex models: from cell mechanics to tissue morphogenesis. Philos Trans R Soc B Biol Sci 372(1720):20150520. doi:10.1098/rstb.2015.0520

    Article  Google Scholar 

  • Bielmeier C, Alt S, Weichselberger V, La Fortezza M, Harz H, Jülicher F, Salbreux G, Classen AK (2016) Interface contractility between differently fated cells drives cell elimination and cyst formation. Curr Biol 26(5):563. doi:10.1016/j.cub.2015.12.063

    Article  Google Scholar 

  • Mota B, Herculano-Houzel S (2015) Cortical folding scales universally with surface area and thickness, not number of neurons. Science 349(6243):74. doi:10.1126/science.aaa9101

  • Simons BD (2013) Getting your gut into shape. Science 342(6155):203. doi:10.1126/science.1245288

  • Farhadifar R, Röper JC, Aigouy B, Eaton S, Jülicher F (2007) The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr Biol 17(24):2095. doi:10.1016/j.cub.2007.11.049

    Article  Google Scholar 

  • Fletcher AG, Osborne JM, Maini PK, Gavaghan DJ (2013) Implementing vertex dynamics models of cell populations in biology within a consistent computational framework. Prog Biophys Mol Biol 113(2):299. doi:10.1016/j.pbiomolbio.2013.09.003

    Article  Google Scholar 

  • Fletcher AG, Osterfield M, Baker RE, Shvartsman SY (2014) Vertex models of epithelial morphogenesis. Biophys J 106(11):2291. doi:10.1016/j.bpj.2013.11.4498

    Article  Google Scholar 

  • Štorgel N, Krajnc M, Mrak P, Štrus J, Ziherl P(2016) Quantitative morphology of epithelial folds. Biophys J 110(1):269. doi:10.1016/j.bpj.2015.11.024

  • Merzouki A, Malaspinas O, Chopard B (2016) The mechanical properties of a cell-based numerical model of epithelium. Soft Matter 12(21):4745. doi:10.1039/C6SM00106H

    Article  Google Scholar 

  • Milinkovitch MC, Manukyan L, Debry A, Di-Poï N, Martin S, Singh D, Lambert D, Zwicker M (2013) Crocodile head scales are not developmental units but emerge from physical cracking. Science 339(6115):78. doi:10.1126/science.1226265

    Article  Google Scholar 

  • Misra M, Audoly B, Kevrekidis IG, Shvartsman SY (2016) Shape transformations of epithelial shells. Biophys J 110(7):1670. doi:10.1016/j.bpj.2016.03.009

    Article  Google Scholar 

  • Monier B, Gettings M, Gay G, Mangeat T, Schott S, Guarner A, Suzanne M (2015) Apico-basal forces exerted by apoptotic cells drive epithelium folding. Nature 518(7538):245. doi:10.1038/nature14152

    Article  Google Scholar 

  • Mota B, Herculano-Houzel S (2015) Cortical folding scales universally with surface area and thickness, not number of neurons. Science 349(6243):74. doi:10.1126/science.aaa9101

    Article  MathSciNet  MATH  Google Scholar 

  • Nagai T, Honda H (2009) Computer simulation of wound closure in epithelial tissues: cell basal-lamina adhesion. Phys Rev E 80(6):061903. doi:10.1103/PhysRevE.80.061903

    Article  Google Scholar 

  • Polyakov O, He B, Swan M, Shaevitz JW, Kaschube M, Wieschaus E (2014) Passive mechanical forces control cell-shape change during Drosophila ventral furrow formation. Biophys J 107(4):998. doi:10.1016/j.bpj.2014.07.013

    Article  Google Scholar 

  • Rauzi M, Hoevar Brezavek A, Ziherl P, Leptin M (2013) Physical models of mesoderm invagination in Drosophila embryo. Biophys J 105(1):3. doi:10.1016/j.bpj.2013.05.039

    Article  Google Scholar 

  • Shyer A, Talline T, Nerurkar N, Wei Z, Kim E, Kaplan D, Tabin C, Mahadevan L (2013) Villification: how the gut gets its villi. Science 342:212

    Article  Google Scholar 

  • Simons BD (2013) Getting your gut into shape. Science 342(6155):203. doi:10.1126/science.1245288

    Article  Google Scholar 

  • Štorgel N, Krajnc M, Mrak P, Štrus J, Ziherl P, (2016) Quantitative morphology of epithelial folds. Biophys J 110(1):269. doi:10.1016/j.bpj.2015.11.024

  • Tallinen T, Chung JY, Rousseau F, Girard N, Lefèvre J, Mahadevan L (2016) On the growth and form of cortical convolutions. Nat Phys 12(6):588. doi:10.1038/nphys3632

    Article  Google Scholar 

  • Brückner BR (1853) Janshoff A (2015), Elastic properties of epithelial cells probed by atomic force microscopy. Biochim Biophys Acta (BBA) Mol. Cell Res 11, Part B:3075. doi:10.1016/j.bbamcr.2015.07.010

  • Tamulonis C, Postma M, Marlow HQ, Magie CR, de Jong J, Kaandorp J (2011) A cell-based model of Nematostella vectensis gastrulation including bottle cell formation, invagination and zippering. Dev Biol 351(1):217. doi:10.1016/j.ydbio.2010.10.017

    Article  Google Scholar 

  • Umetsu D, Aigouy B, Aliee M, Sui L, Eaton S, Jülicher F, Dahmann C (2014) Local increases in mechanical tension shape compartment boundaries by biasing cell intercalations. Curr Biol 24(15):1798. doi:10.1016/j.cub.2014.06.052

    Article  Google Scholar 

Download references

Acknowledgements

We thank the SystemsX.ch initiative who supported this work (project EpiPhysX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziza Merzouki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merzouki, A., Malaspinas, O., Trushko, A. et al. Influence of cell mechanics and proliferation on the buckling of simulated tissues using a vertex model. Nat Comput 17, 511–519 (2018). https://doi.org/10.1007/s11047-017-9629-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-017-9629-y

Keywords

Navigation