Skip to main content

Advertisement

Log in

Aspergillus: Sex and Recombination

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The genus Aspergillus is one of the most widespread groups of fungi on Earth, comprised of about 300–350 species with very diverse lifestyles. Most species produce asexual propagula (conidia) on conidial heads. Despite their ubiquity, a sexual cycle has not yet been identified for most of the aspergilli. Where sexual reproduction is present, species exhibit either homothallic (self fertile) or heterothallic (obligate outcrossing) breeding systems. A parasexual cycle has also been described in some Aspergillus species. As in other fungi, sexual reproduction is governed by mating-type (MAT) genes, which determine sexual identity and are involved in regulating later stages of sexual development. Previous population genetic studies have indicated that some supposedly asexual aspergilli exhibit evidence of a recombining population structure, suggesting the presence of a cryptic sexual cycle. In addition, genome analyses have revealed networks of genes necessary for sexual reproduction in several Aspergillus species, again consistent with latent sexuality in these fungi. Knowledge of MAT gene presence has then successfully been applied to induce sexual reproduction between MAT1-1 and MAT1-2 isolates of certain supposedly asexual aspergilli. Recent progress in understanding the extent and significance of sexual reproduction is described here, with special emphasis on findings that are relevant to clinically important aspergilli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B. CBS Laboratory Manual Series 2: food and indoor fungi. The Netherlands: CBS-KNAW Fungal Biodiversity Centre Utrecht; 2010.

    Google Scholar 

  2. Dyer PS, O’Gorman CM. A fungal sexual revolution: Aspergillus and Penicillium show the way. Curr Opin Microbiol. 2011;14:649–54.

    Article  PubMed  Google Scholar 

  3. Pál K, van Diepeningen AD, Varga J, Hoekstra RF, Dyer PS, Debets AJ. Sexual and vegetative compatibility genes in the aspergilli. Stud Mycol. 2007;59:19–30.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Rajendran C, Muthappa BN. Saitoa, a new genus of plectomycetes. Proc Indian Acad Sci (Plant Sciences). 1980;89:185–91.

    Google Scholar 

  5. Peterson SW. Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia. 2008;100:205–26.

    Article  CAS  PubMed  Google Scholar 

  6. Samson RA, Varga J. Molecular systematics of Aspergillus and its teleomorphs. In: Machida M, Gomi K, editors. Aspergillus molecular biology and genomics. Norfolk: Caister Academic Press; 2010. p. 19–40.

    Google Scholar 

  7. McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, et al. International code of nomenclature for algae, fungi, and plants (Melbourne Code), adopted by the eighteenth international botanical congress Melbourne, Australia, July 2011. Königstein: Koeltz Scientific Books; 2012.

  8. Geiser DM, Pitt JI, Taylor JW. Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proc Natl Acad Sci USA. 1998;95:388–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Varga J, Tóth B. Genetic variability and reproductive mode of Aspergillus fumigatus. Infect Genet Evol. 2003;3:3–17.

    Article  CAS  PubMed  Google Scholar 

  10. Dyer PS, Paoletti M. Reproduction in Aspergillus fumigatus: sexuality in a supposedly asexual species? Med Mycol. 2005;43(Suppl 1):7–14.

    Article  Google Scholar 

  11. Paoletti M, Rydholm C, Schwier EU, Anderson MJ, Szakacs G, Lutzoni F, et al. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Biol. 2005;15:1242–8.

    Article  CAS  PubMed  Google Scholar 

  12. Champe SP, Simon LD. Cellular differentiation and tissue formation in the fungus Aspergillus nidulans. In: Rossomando EF, Alexander S, editors. Morphogenesis, an analysis of the development of biological form. New York: Macel Dekker; 1992. p. 63–91.

    Google Scholar 

  13. Bennett JW. Aspergillus: a primer for the novice. Med Mycol. 2009;47:1–8.

    Article  Google Scholar 

  14. Krijgsheld P, Bleichrodt R, van Veluw GJ, Wang F, Müller WH, Dijksterhuis J, et al. Development in Aspergillus. Stud Mycol. 2013;74:1–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Taylor JW, Jacobson DJ, Fisher MC. The evolution of asexual fungi: reproduction, speciation and classification. Annu Rev Phytopathol. 1999;37:197–246.

    Article  CAS  PubMed  Google Scholar 

  16. LoBuglio KF, Taylor JW. Recombination and genetic differentiation in the mycorrhizal fungus Cenococcum geophilum Fr. Mycologia. 2002;94:772–80.

    Article  PubMed  Google Scholar 

  17. Pontecorvo G, Roper JA, Forbese E. Genetic recombination without sexual reproduction in Aspergillus niger. J Gen Microbiol. 1953;8:198–210.

    Article  CAS  PubMed  Google Scholar 

  18. Ball C, Hamlym PF. Genetic recombination studies with Cephalosporium acremonium related to the production of the industrially important antibiotic cephalosporin C. Braz J Genet. 1982;5:1–13.

    CAS  Google Scholar 

  19. Bonatelli R Jr, Azevedo JL, Valent GU. Parasexuality in a citric acid producing strain of Aspergillus niger. Braz J Genet. 1983;3:399–405.

    Google Scholar 

  20. Baptista F, Machado MFPS, Castro-Prado MAA. Alternative reproduction pathway in Aspergillus nidulans. Folia Microbiol. 2003;48:597–604.

    Article  CAS  Google Scholar 

  21. Geiser DM. Sexual structures in Aspergillus: morphology, importance and genomics. Med Mycol. 2009;47(Suppl 1):21–6.

    Article  Google Scholar 

  22. Dyer PS. Sexual reproduction and significance of MAT in the aspergilli. In: Heitman J, Kronstad JW, Taylor JW, editors. Sex in Fungi: molecular determination and evolutionary principles. Washington: ASM Press; 2007. p. 123–42.

    Chapter  Google Scholar 

  23. Paoletti M, Seymour FA, Alcocer MJ, Kaur N, Calvo AM, Archer DB, et al. Mating type and the genetic basis of self-fertility in the model fungus Aspergillus nidulans. Curr Biol. 2007;17:1384–9.

    Article  CAS  PubMed  Google Scholar 

  24. Dyer PS, O’Gorman CM. Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol Rev. 2012;36:165–92.

    Article  CAS  PubMed  Google Scholar 

  25. Czaja W, Miller KY, Miller BL. Complex mechanisms regulate developmental expression of the matA (HMG) mating type gene in homothallic Aspergillus nidulans. Genetics. 2011;189:795–808.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Debuchy R, Berteaux-Lecellier V, Silar P. Mating systems and sexual morphogenesis in ascomycetes. Cellular and molecular biology of filamentous fungi. In: Borkovich KA, Ebbole DJ, editors. Washington: ASM Press 2010. p. 501–35.

  27. Turgeon BG, Yoder OC. Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet Biol. 2000;31:1–5.

    Article  CAS  PubMed  Google Scholar 

  28. Szewczyk E, Krappmann S. Conserved regulators of mating are essential for Aspergillus fumigatus cleistothecium formation. Eukaryot Cell. 2010;9:774–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Rydholm C, Dyer PS, Lutzoni F. DNA sequence characterization and molecular evolution of MAT1 and MAT2 mating-type loci of the self-compatible ascomycete mold Neosartorya fischeri. Eukaryot Cell. 2007;6:868–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ramirez-Prado JH, Moore GG, Horn BW, Carbone I. Characterization and population analysis of the mating-type genes in Aspergillus flavus and A. parasiticus. Fungal Genet Biol. 2008;45:1292–9.

    Article  CAS  PubMed  Google Scholar 

  31. Taylor JW, Geiser DM, Burt A, Koufopanou V. The evolutionary biology and population genetics underlying fungal strain typing. Clin Microbiol Rev. 1999;12:126–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. McDonald BA, Linde CC. Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol. 2002;40:349–79.

    Article  CAS  PubMed  Google Scholar 

  33. Geiser DM, Arnold ML, Timberlake WE. Sexual origins of British Aspergillus nidulans isolates. Proc Natl Acad Sci USA. 1994;91:2349–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman J, Batzoglou S, et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature. 2005;438:1105–15.

    Article  CAS  PubMed  Google Scholar 

  35. Butler G, Rasmussen MD, Lin MF, Santos MAS, Sakthikumar S, Munro CA, et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009;459:657–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wada R, Maruyama JI, Yamaguchi H, Yamamoto N, Wagu Y, Paoletti M, et al. Presence and functionality of mating type genes in the supposedly asexual filamentous fungus Aspergillus oryzae. Appl Environ Microb. 2012;78:2819–29.

    Article  CAS  Google Scholar 

  37. Heitman J, Carter DA, Dyer PS, Soll. Sexual reproduction of human fungal pathogens. In: Casadevall A, Mitchell AP, Berman J, et al., editors. Fungal pathogens. New York: Cold Spring Harbour Laboratory Press; 2014.

    Google Scholar 

  38. Samson RA, Hong S, Peterson SW, Frisvad JC, Varga J. Polyphasic taxonomy of Aspergillus section Fumigati and its teleomorph Neosartorya. Stud Mycol. 2007;59:147–207.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Samson RA, Varga J, Dyer PS. Morphology and reproductive mode of Aspergillus fumigatus. In: Latgé JP, Steinbach WJ, editors. Aspergillus fumigatus and Aspergillosis. Washington: ASM Press; 2009. p. 7–13.

    Google Scholar 

  40. Malik A, Sharma S, Satya S, Mishra A. Development of a biological system employing Aspergillus lentulus for Cr removal from a small-scale electroplating industry effluent. Asia Pac J Chem Eng. 2011;6:55–63.

    Article  Google Scholar 

  41. O’Gorman CM. Airborne Aspergillus fumigatus conidia: a risk factor for aspergillosis. Fung Biol Rev. 2011;25:151–7.

    Article  Google Scholar 

  42. Swilaiman SS, O’Gorman CM, Balajee SA, Dyer PS. Discovery of a sexual cycle in Aspergillus lentulus, a close relative of A. fumigatus. Eukaryot Cell. 2013;12:962–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Debeaupuis JP, Sarfati J, Chalazet V, Latgé JP. Genetic diversity among clinical and environmental isolates of Aspergillus fumigatus. Infect Immun. 1997;65:3080–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Chazalet V, Debeaupuis JP, Sarfati J, lortholary J, Ribaud P, Shah P, et al. Molecular typing of environmental and patient isolates of Aspergillus fumigatus from various hospital settings. J Clin Microbiol. 1998;36:1494–500.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Pringle A, Baker DM, Platt JL, Wares JP, Latge JP, Taylor JW. Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution. 2005;59:1886–99.

    Article  CAS  PubMed  Google Scholar 

  46. Rydholm C, Szakacs G, Lutzoni F. Low genetic variation and no detectable population structure in Aspergillus fumigatus compared to closely related Neosartorya species. Eukaryot Cell. 2006;5:650–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Pöggeler S. Genomic evidence for mating abilities in the asexual pathogen Aspergillus fumigatus. Curr Genet. 2002;42:153–60.

    Article  PubMed  Google Scholar 

  48. Bain JM, Tavanti A, Davidson AD, Jaconsen MD, Shaw D, Gow NAR. Multlocus sequence typing of the pathogenic fungus Aspergillus fumigatus. J Clin Microbiol. 2007;45:1469–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. O’Gorman CM, Fuller HT, Dyer PS. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature. 2009;457:471–4.

    Article  PubMed  Google Scholar 

  50. Camps SMT, Rijs AJMM, Klaassen CHW, Meis JF, O’Gorman CM, Dyer PS, et al. Molecular epidemiology of Aspergillus fumigatus isolates harboring the TR43/L98H azole resistance mechanism. J Clin Microbiol. 2012;50:2674–80.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Sugui JA, Losada L, Wang W, Varga J, Ngamskulrungroj P, Abu-Asab M, et al. Identification and characterization of an Aspergillus fumigatus “supermater” pair. MBio. 2011;2:e00234-11.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Sugui JA, Vinh DC, Nardone G, Shea YR, Chang YC, Zelazny AM, et al. Neosartorya udagawae (Aspergillus udagawae), an emerging agent of aspergillosis: how different is it from Aspergillus fumigatus? J Clin Microbiol. 2010;48:220–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Balajee SA, Gribskov JL, Hanley E, Nickle D, Marr KA. Aspergillus lentulus sp nov., a new sibling species of A. fumigatus. Eukaryot Cell. 2005;4:625–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Balajee SA, Weaver M, Imhof A, Gribskov J, Marr KA. Aspergillus fumigatus variant with decreased susceptibility to multiple antifungals. Antimicrob Agents Chemother. 2004;48:1197–203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Balajee SA, Nickle D, Varga J, Marr KA. Molecular studies reveal frequent misidentification of Aspergillus fumigatus by morphotyping. Eukaryot Cell. 2006;5:1705–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Takada M, Udagawa S, Norizuki K. Isolation of Neosartorya fennelliae and interspecific pairings between N. fennelliae, N. spathulata, and Aspergillus fumigatus. Trans Mycol Soc Jpn. 1986;27.:415–23.

    Google Scholar 

  57. Fogarty WM. Enzymes of the genus Aspergillus. In: Smith JE, editor. Aspergillus. New York: Plenum Press; 1994. p. 177–218.

    Google Scholar 

  58. Roehr M, Kubicek CP, Kominek J. Industrial acids and other small molecules. In: Bennett JW, editor. Aspergillus: biology and industrial applications. Boston: Butterworth Heinemann; 1992. p. 91–131.

    Google Scholar 

  59. Ousmanova D, Parker W. Fungal generation of organic acids for removal of lead from contaminated soil. Water Air Soil Pollut. 2007;179:365–80.

    Article  CAS  Google Scholar 

  60. Grainger S, Fu GY, Hall ER. Biosorption of color-imparting substances in biologically treated pulp mill effluent using Aspergillus niger fungal biomass. Water Air Soil Pollut. 2011;217:233–44.

    Article  CAS  Google Scholar 

  61. Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Species identification and antifungal susceptibility patterns of species belonging to Aspergillus section Nigri. Antimicrob Agents Chemother. 2010;53:4514–7.

    Article  Google Scholar 

  62. Kozakiewicz Z. Aspergillus species on stored products. Mycol Pap. 1989;161:1–188.

    Google Scholar 

  63. Varga J, Kevei E, Rinyu E, Téren J, Kozakiewicz Z. Ochratoxin production by Aspergillus species. Appl Environ Microbiol. 1996;62:4461–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Frisvad JC, Smedsgaard J, Samson RA, Larsen TO, Thrane U. Fumonisin B2 production by Aspergillus niger. J Agric Food Chem. 2007;55:9727–32.

    Article  CAS  PubMed  Google Scholar 

  65. Samson RA, Noonim P, Meijer M, Houbraken J, Frisvad JC, Varga J. Diagnostic tools to identify black Aspergilli. Stud Mycol. 2007;59:129–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. van Diepeningen AD. Horizontal transfer of genetic elements in the black Aspergilli. PhD thesis, Wageningen University, Netherlands. 1999.

  67. Kevei F, Tóth B, Coenen A, Hamari Z, Varga J, Croft JH. Recombination of mitochondrial DNA following transmission of mitochondria among incompatible strains of black Aspergilli. Mol Gen Genet. 1997;254:379–88.

    Article  CAS  PubMed  Google Scholar 

  68. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol. 2007;25:221–31.

    Article  PubMed  Google Scholar 

  69. Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP. Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology. 2005;151:1809–21.

    Article  CAS  PubMed  Google Scholar 

  70. Wadman MW, de Vries RP, Kalkhove SIC, Veldink GA, Vliegenthart JFG. Characterization of oxylipins and dioxygenase genes in the asexual fungus Aspergillus niger. BMC Microbiol. 2009;9:59.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Hong SB, Lee M, Kim DH, Varga J, Frisvad JC, Perrone G, et al. Aspergillus luchuensis, an industrially important black Aspergillus in East Asia. PLoS One. 2013;8(5):e63769.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Hong SB, Yamada O, Samson RA. Taxonomic re-evaluation of black koji molds. Appl Microbiol Biotechnol. 2014;98:555–61.

    Article  CAS  PubMed  Google Scholar 

  73. Horn BW, Olarte RA, Peterson SW, Carbone I. Sexual reproduction in Aspergillus tubingensis from section Nigri. Mycologia. 2013;105:1153–63.

    Article  CAS  PubMed  Google Scholar 

  74. Darbyshir HL, van de Vondervoort PJI, Dyer PS. Discovery of sexual reproduction in the black aspergilli. Fungal Gent Rep. 2013;60:687.

    Google Scholar 

  75. Fennell DI, Warcup JH. The ascocarps of Aspergillus alliaceus. Mycologia. 1959;51:409–15.

    Article  Google Scholar 

  76. Tewari JP. A new indeterminate stromatal type in Petromyces. Mycologia. 1985;77:114–20.

    Article  Google Scholar 

  77. Peterson SW, Ito Y, Horn BW, Goto T. Aspergillus bombycis, a new aflatoxigenic species and genetic variation in its sibling species, A. nomius. Mycologia. 2001;93:689–703.

    Article  CAS  Google Scholar 

  78. Horn BW, Moore GG, Carbone I. Sexual reproduction in Aspergillus flavus. Mycologia. 2009;101:423–9.

    Article  PubMed  Google Scholar 

  79. Horn BW, Ramirez-Prado JH, Carbone I. Sexual reproduction and recombination in the aflatoxin-producing fungus Aspergillus parasiticus. Fungal Genet Biol. 2009;46:169–75.

    Article  CAS  PubMed  Google Scholar 

  80. Varga J, Toth B, Kevei E, Palagyi A, Kozakiewicz Z. Analysis of genetic variability within the genus Petromyces. Antonie Van Leeuwenhoek. 2000;77:83–9.

    Article  CAS  PubMed  Google Scholar 

  81. Olarte RA, Horn B, Dorner JW, Monacell JT, Singh R, Stone EA, et al. Effect of sexual recombination on population diversity in aflatoxin production by Aspergillus flavus and evidence for cryptic heterokaryosis. Mol Ecol. 2012;21:1453–76.

    Article  PubMed  Google Scholar 

  82. Grubisha LC, Cotty PJ. Genetic isolation among sympatric vegetative compatibility groups of the aflatoxin-producing fungus Aspergillus flavus. Mol Ecol. 2009;19:269–80.

    Article  PubMed  Google Scholar 

  83. Horn BW, Greene RL, Sobolev VS, Dorner JW, Powell JH, Layton RC. Association of morphology and mycotoxin production with vegetative compatibility groups in Aspergillus flavus, A. parasiticus, and A. tamarii. Mycologia. 1996;88:574–87.

    Article  CAS  Google Scholar 

  84. Moore GG, Singh R, Horn BW, Carbone I. Recombination and lineage-specific gene loss in the aflatoxin gene cluster of Aspergillus flavus. Mol Ecol. 2009;18:4870–87.

    Article  CAS  PubMed  Google Scholar 

  85. Moore GG, Elliott JL, Singh R, Horn BW, Dorner JW, Stone EA, et al. Sexuality generates diversity in the aflatoxin gene cluster: evidence on a global scale. PLoS Pathog. 2013;9:e1003574.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Horn BW, Moore GG, Carbone I. Sexual reproduction in aflatoxin-producing Aspergillus nomius. Mycologia. 2011;103:174–83.

    Article  PubMed  Google Scholar 

  87. Ramírez-Camejo LA, Torres-Ocampo AP, Agosto-Rivera JL, Bayman P. An opportunistic human pathogen on the fly: strains of Aspergillus flavus vary in virulence in Drosophila melanogaster. Med Mycol. 2014;52:211–9.

    Article  PubMed  Google Scholar 

  88. Horn BW, Sorensen RB, Lamb MC, Sobolev VS, Olarte RA, Worthington CJ, et al. Sexual reproduction in Aspergillus flavus sclerotia naturally produced in corn. Phytopathology. 2014;104:75–85.

    Article  PubMed  Google Scholar 

  89. Ramírez-Camejo LA, Zuluaga-Montero A, Lázaro-Escudero M, Hernández-Kendall V, Bayman P. Phylogeography of the cosmopolitan fungus Aspergillus flavus: is everything everywhere? Fungal Biol. 2012;116:452–63.

    Article  PubMed  Google Scholar 

  90. Sweany RR, Damann KE Jr, Kaller MD. Comparison of soil and corn kernel Aspergillus flavus populations: evidence for niche specialization. Phytopathology. 2011;101:952–9.

    Article  PubMed  Google Scholar 

  91. Horn BW, Dorner JW. Regional differences in production of aflatoxin B1 and cyclopiazonic acid by soil isolates of Aspergillus flavus along a transect within the United States. Appl Environ Microbiol. 1999;65:1444–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Moore GG. Sex and recombination in aflatoxigenic Aspergilli: global implications. Front Microbiol. 2014;5:32.

  93. Arabatzis M, Velegraki A. Sexual reproduction in the opportunistic human pathogen Aspergillus terreus. Mycologia. 2013;105:71–9.

    Article  PubMed  Google Scholar 

  94. Pyrzak W, Miller KY, Miller BL. The mating type protein Mat1-2 from asexual Aspergillus fumigatus drives sexual reproduction in fertile Aspergillus nidulans. Eukaryot Cell. 2008;7:1029–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Groβe V, Krappmann S. The asexual pathogen Aspergillus fumigatus expresses functional determinants of Aspergillus nidulans sexual development. Eukaryot Cell. 2008;7:1724–32.

    Article  Google Scholar 

  96. Alvarez-Perez S, Blanco JL, Alba P, Garcia ME. Mating type and invasiveness are significantly associated in Aspergillus fumigatus. Med Mycol. 2010;48:273–7.

    Article  CAS  PubMed  Google Scholar 

  97. Cheema MS, Christians JK. Virulence in an insect model differs between mating types in Aspergillus fumigatus. Med Mycol. 2011;49:202–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Part of the work presented was supported by OTKA Grant Nos. K84122 and K84077, and by the European Union through the Hungary–Serbia IPA Cross-border Cooperation Programme (ToxFreeFeed, HU-SRB/1002/122/062). This research was realised in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Excellence Program—Elaborating and operating an inland student and researcher personal support system convergence program”. The project was subsidised by the European Union and co-financed by the European Social Fund. PSD and CMO’G also thank the Wellcome Trust, UK for providing financial support for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Varga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varga, J., Szigeti, G., Baranyi, N. et al. Aspergillus: Sex and Recombination. Mycopathologia 178, 349–362 (2014). https://doi.org/10.1007/s11046-014-9795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-014-9795-8

Keywords

Navigation