Skip to main content
Log in

An extended divide-and-conquer algorithm for a generalized class of multibody constraints

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

An extension to the divide-and-conquer algorithm (DCA) is presented in this paper to model constrained multibody systems. The constraints of interest are those applied to the system due to the inverse dynamics or control laws rather than the kinematically closed loops which have been studied in the literature. These imposed constraints are often expressed in terms of the generalized coordinates and speeds. A set of unknown generalized constraint forces must be considered in the equations of motion to enforce these algebraic constraints. In this paper dynamics of this class of multibody constrained systems is formulated using a Generalized-DCA. In this scheme, introducing dynamically equivalent forcing systems, each generalized constraint force is replaced by its dynamically equivalent spatial constraint force applied from the appropriate parent body to the associated child body at the connecting joint without violating the dynamics of the original system. The handle equations of motion are then formulated considering these dynamically equivalent spatial constraint forces. These equations in the GDCA scheme are used in the assembly and disassembly processes to solve for the states of the system, as well as the generalized constraint forces and/or Lagrange multipliers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anderson, K.S.: Recursive derivation of explicit equations of motion for efficient dynamic/control simulation of large multibody systems. Ph.D. thesis, Stanford University (1990)

  2. Armstrong, W.W.: Recursive solution to the equations of motion of an n-link manipulator. In: Fifth World Congress on the Theory of Machines and Mechanisms, vol. 2, pp. 1342–1346 (1979)

    Google Scholar 

  3. Artemova, S., Grudinin, S., Redon, S.: Fast construction of assembly trees for molecular graphs. J. Comput. Chem. 32, 1589–1598 (2011)

    Article  Google Scholar 

  4. Avello, A., Jimenez, J.M., Bayo, E., Garsia de Jalón, J.: A simple and highly parallelizable method for real-time dynamic simulation based on velocity transformations. Comput. Methods Appl. Math. 107(3), 313–339 (1993)

    MATH  Google Scholar 

  5. Bae, D.S., Haug, E.J.: A recursive formation for constrained mechanical system dynamics. Part I. Open loop systems. Mech. Struct. Mach. 15(3), 359–382 (1987)

    Article  Google Scholar 

  6. Bae, D.S., Kuhl, J.G., Haug, E.J.: A recursive formulation for constrained mechanical system dynamics. Part III. Parallel processor implementation. Mech. Based Des. Struc. 16(2), 249–269 (1988)

    Article  Google Scholar 

  7. Bhalerao, K.D., Critchley, J., Anderson, K.S.: An efficient parallel dynamics algorithm for simulation of large articulated robotic systems. Mech. Mach. Theory 53, 86–98 (2012)

    Article  Google Scholar 

  8. Bhalerao, K.D., Poursina, M., Anderson, K.S.: An efficient direct differentiation approach for sensitivity analysis of flexible multibody systems. Multibody Syst. Dyn. 23(2), 121–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brandl, H., Johanni, R., Otter, M.: A very efficient algorithm for the simulation of robots and similar multibody systems without inversion of the mass matrix. In: IFAC/IFIP/IMACS Symposium, Vienna, Austria, pp. 95–100 (1986)

    Google Scholar 

  10. Chung, S., Haug, E.J.: Real-time simulation of multibody dynamics on shared memory multiprocessors. J. Dyn. Syst. Meas. Control 115, 627–637 (1993)

    Article  MATH  Google Scholar 

  11. Critchley, J.H., Anderson, K.S.: Parallel logarithmic order algorithm for general multibody system dynamics. Multibody Syst. Dyn. 12(1), 75–93 (2004)

    Article  MATH  Google Scholar 

  12. Haug, P.H.E.: Second-order design sensitivity analysis of mechanical system dynamics. Int. J. Numer. Methods Eng. 18, 1699–1717 (1982)

    Article  MATH  Google Scholar 

  13. Featherstone, R.: The calculation of robotic dynamics using articulated body inertias. Int. J. Robot. Res. 2(1), 13–30 (1983)

    Article  Google Scholar 

  14. Featherstone, R.: Robot Dynamics Algorithms. Kluwer Academic, New York (1987)

    Google Scholar 

  15. Featherstone, R.: A divide-and-conquer articulated body algorithm for parallel O(log(n)) calculation of rigid body dynamics. Part 1. Basic algorithm. Int. J. Robot. Res. 18(9), 867–875 (1999)

    Article  Google Scholar 

  16. Featherstone, R.: A divide-and-conquer articulated body algorithm for parallel O(log(n)) calculation of rigid body dynamics. Part 2. Trees, loops, and accuracy. Int. J. Robot. Res. 18(9), 876–892 (1999)

    Article  Google Scholar 

  17. Fijany, A., Bejczy, A.K.: Techniques for parallel computation of mechanical manipulator dynamics. Part II. Forward dynamics. In: Leondes, C. (ed.) Advances in Robotic Systems and Control, vol. 40, pp. 357–410. Academic Press, San Diego (1991)

    Google Scholar 

  18. Fijany, A., Sharf, I., D’Eleuterio, G.M.T.: Parallel O(logn) algorithms for computation of manipulator forward dynamics. IEEE Trans. Robotic. Autom. 11(3), 389–400 (1995)

    Article  Google Scholar 

  19. Hwang, R.S., Bae, D., Kuhl, J.G., Haug, E.J.: Parallel processing for real-time dynamics systems simulations. J. Mech. Des. 112(4), 520–528 (1990)

    Article  Google Scholar 

  20. Jain, A.: Unified formulation of dynamics for serial rigid multibody systems. J. Guid. Control Dyn. 14(3), 531–542 (1991)

    Article  MATH  Google Scholar 

  21. Jain, A., Vaidehi, N., Rodriguez, G.: A fast recursive algorithm for molecular dynamics simulation. J. Comput. Phys. 106(2), 258–268 (1993)

    MATH  Google Scholar 

  22. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Application. McGraw-Hill, New York (1985)

    Google Scholar 

  23. Kasahara, H., Fujii, H., Iwata, M.: Parallel processing of robot motion simulation. In: Proceedings IFAC 10th World Conference (1987)

    Google Scholar 

  24. Kreutz-Delgado, K., Jain, A., Rodriguez, G.: Recursive formulation of operational space control. Int. J. Robot. Res. 11(4), 320–328 (1992)

    Article  Google Scholar 

  25. Lathrop, L.H.: Parallelism in manipulator dynamics. Int. J. Robot. Res. 4(2), 80–102 (1985)

    Article  Google Scholar 

  26. Luh, J.S.Y., Walker, M.W., Paul, R.P.C.: On-line computational scheme for mechanical manipulators. J. Dyn. Syst. Meas. Control 102, 69–76 (1980)

    Article  MathSciNet  Google Scholar 

  27. Malczyk, P., Fraczek, J.: Lagrange multipliers based divide and conquer algorithm for dynamics of general multibody systems. In: Proceedings of the ECCOMAS Thematic Conference—Multibody Systems Dynamics, Warsaw, Poland (2009)

    Google Scholar 

  28. Malczyk, P., Janusz Fraczek, J.C.: Parallel index-3 formulation for real-time multibody dynamics simulations. In: Proceedings of the 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland (2010)

    Google Scholar 

  29. Mráz, L., Valášek, M.: Solution of three key problems for massive parallelization of multibody dynamics. Multibody System Dynamics, 1–19

  30. Mukherjee, R., Anderson, K.S.: A logarithmic complexity divide-and-conquer algorithm for multi-flexible articulated body systems. Comput. Nonlinear Dyn. 2(1), 10–21 (2007)

    Article  MathSciNet  Google Scholar 

  31. Mukherjee, R., Anderson, K.S.: An orthogonal complement based divide-and-conquer algorithm for constrained multibody systems. Nonlinear Dynam. 48(1–2), 199–215 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mukherjee, R.M., Anderson, K.S.: Efficient methodology for multibody simulations with discontinuous changes in system definition. Multibody Syst. Dyn. 18, 145–168 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mukherjee, R.M., Bhalerao, K.D., Anderson, K.S.: A divide-and-conquer direct differentiation approach for multibody system sensitivity analysis. Struc. Multidiscip. Optim. 35, 413–429 (2007)

    Article  MathSciNet  Google Scholar 

  34. Mukherjee, R.M., Crozier, P.S., Plimpton, S.J., Anderson, K.S.: Substructured molecular dynamics using multibody dynamics algorithms. International Journal of Non-Linear Mechanics: Nonlinear Mechanics and Dynamics of Macromolecules (2007)

  35. Neilan, P.E.: Efficient computer simulation of motions of multibody systems. Ph.D. thesis, Stanford University (1986)

  36. Poursina, M., Anderson, K.S.: Constant temperature simulation of articulated polymers using divide-and-conquer algorithm. In: Proceedings of the ECCOMAS Thematic Conference—Multibody Systems Dynamics, Brussels, Belgium (2011)

    Google Scholar 

  37. Poursina, M., Anderson, K.S.: Multibody dynamics in generalized divide and conquer algorithm (GDCA) scheme. In: Proceedings of the Eighths International Conference on Multibody Systems, Nonlinear Dynam. and Control, ASME Design Engineering Technical Conference 2011 (IDETC11), Washington, DC, pp. DETC2011–DETC48383 (2011)

    Google Scholar 

  38. Poursina, M., Bhalerao, K.D., Flores, S., Anderson, K.S., Laederach, A.: Strategies for articulated multibody-based adaptive coarse grain simulation of RNA. Methods Enzymol. 487, 73–98 (2011)

    Article  Google Scholar 

  39. Roberson, R.E., Schwertassek, R.: Dynamics of Multibody Systems. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  40. Rosenthal, D.: An order n formulation for robotic systems. J. Astronaut. Sci. 38(4), 511–529 (1990)

    Google Scholar 

  41. Rosenthal, D.E., Sherman, M.A.: High performance multibody simulations via symbolic equation manipulation and Kane’s method. J. Astronaut. Sci. 34(3), 223–239 (1986)

    Google Scholar 

  42. Rossi, R., Isorce, M., Morin, S., Flocard, J., Arumugam, K., Crouzy, S., Vivaudou, M., Redon, S.: Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design. Bioinformatics 23(13), 408–417 (2007)

    Article  Google Scholar 

  43. Shabana, A.A.: Dynamics of Multibody Systems, 2nd edn. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  44. Vaidehi, N., Jain, A., Goddard, W.A.: Constant temperature constrained molecular dynamics: the Newton–Euler inverse mass operator method. J. Phys. Chem. 100(25), 10,508–10,517 (1996)

    Article  Google Scholar 

  45. Vereshchagin, A.F.: Computer simulation of the dynamics of complicated mechanisms of robot-manipulators. Eng. Cybern. 12(6), 65–70 (1974)

    Google Scholar 

  46. Walker, M.W., Orin, D.E.: Efficient dynamic computer simulation of robotic mechanisms. J. Dyn. Syst. Meas. Control. 104, 205–211 (1982)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Support for this work received under National Science Foundation through award No. 0757936 is gratefully acknowledged. The author would like to thank Mr. Michael Sherman from Simbios Center at Stanford University for several useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Poursina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poursina, M., Anderson, K.S. An extended divide-and-conquer algorithm for a generalized class of multibody constraints. Multibody Syst Dyn 29, 235–254 (2013). https://doi.org/10.1007/s11044-012-9324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-012-9324-9

Keywords

Navigation