Skip to main content

Advertisement

Log in

Iris segmentation for non-ideal Iris biometric systems

  • 1158T: Role of Computer Vision in Smart Cities: Applications and Research Challenges
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

At present, iris recognition systems are highly demanded for covert applications such as monitoring terrorist activities at public places, walk-through portals, smart cities, etc. In general, these systems use image acquisition setups working under relaxed conditions due to which the quality of acquired images is usually poor. For example, images may contain non-uniform illumination, defocus, blur, reflections and eyelids/eyelashes occlusion. Due to these issues, most contemporary iris segmentation schemes do not perform well. In addition, precise localization of eyes in human face images is also a challenging task. No doubt, wrong localization of eyes may certainly lead to failure of the subsequent system modules. To contribute in this regard, this study offers a robust scheme that functions as follows. First, it supplements the Viola-Jones algorithm with the geometrical information of human face to segment eyes. Next, it preprocesses an eyeimage to enhance its contrast, suppress reflections, smooth down spiky gray-level variations if any and marks a circular region-of-interest (ROI) containing iris. Then, it applies an iterative scheme involving Hough transform to segment iris. Finally, it extracts non-circular iris contours using an effective scheme centered on the Lagrange interpolating polynomial. This scheme has shown improved performance on public face-dataset (CASIA-IrisV4-Distance) and two iris datasets, MMU V1.0 and IITD V1.0. On average, it attained 97.97% accuracy rate on these databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ahad MAR, Paul T, Shammi U, Kobashi S (2018) A study on face detection using Viola-Jones algorithm for various backgrounds, Angels and Distances. Applied Soft Computing

  2. Arshad H, Khan M, Sharif M, Mussarat Y, Javed M (2019) Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution. Int J Mach Learn Cybern 10:3601–3618

    Article  Google Scholar 

  3. Arshad H, Khan M, Sharif M, Yasmin M, Tavares J, Zhang Y-D, Satapathy S (2020) A multilevel paradigm for deep convolutional neural network features selection with an application to human gait recognition. Expert Syst

  4. Asthana A, Zafeiriou S, Cheng S, Pantic M (2014) Incremental face alignment in the wild. IEEE Conference on Computer Vision and Pattern Recognition 2014:1859–1866

    Google Scholar 

  5. Biometric_SmartCity (n.d.) https://www.smartcity.press/cybersecurity-with-biometric-technology/

  6. Boonchuan T, Setumin S, Radman A, Suandi SA (2018) Efficient Iris and eyelids detection from facial sketch images. Electronic Letters on Computer Vision and Image Analysis 17(1):16–28

    Article  Google Scholar 

  7. Bowyer KW, Hollingsworth K, Flynn PJ (2008) Image understanding for iris biometrics: a survey. Comput Vis Image Underst 110(2):281–307

    Article  Google Scholar 

  8. Bowyer K, Hollingsworth K, Flynn P (2012) A Survey of Iris Biometrics Research: 2008-2010. Handbook of Iris Recognition

  9. CASIA_database (n.d.) CASIA database; http://biometrics.idealtest.org/dbDetailForUser.do?id=4. Accessed 13 Jan 2020

  10. CASIA_Iris_Database (n.d.) http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp.

  11. Dal-ho C, Kang Ryoung P, Dae Woong R, Yanggon K, Jonghoon Y (2006) Pupil and Iris Localization for Iris Recognition in Mobile Phones. In: Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2006 SNPD 2006 Seventh ACIS International Conference on: 19–20 June 2006, 2006:197–201

  12. Dantcheva A, Erdogmus N, Dugelay JL (2011) On the reliability of eye color as a soft biometric trait. In: Applications of Computer Vision (WACV), 2011 IEEE Workshop on: 5–7 Jan. 2011, 2011:227–231

  13. Daugman JG (1993) High confidence visual recognition of persons by a test of statistical independence. Pattern Analysis and Machine Intelligence, IEEE Transactions on 15(11):1148–1161

    Article  Google Scholar 

  14. Daugman J (2007) New methods in Iris recognition. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 37(5):1167–1175

    Article  Google Scholar 

  15. el Kaddouhi S, Saaidi A, Abarkan M (2018) Eye detection based on Viola & Jones Detector, skin color, and eye template. International Journal of Control and Automation 11:59–72

    Article  Google Scholar 

  16. Fan D-P, Liu J-J, Gao S, Hou Q, Borji A, Cheng M-M (2018) Salient objects in clutter: bringing salient object detection to the foreground. European Conference on Computer Vision (ECCV)

  17. Fu K, Zhao Q, Gu I, Yang J (2019) Deepside: A General Deep Framework for Salient Object Detection. Neurocomputing 356:69–82

    Article  Google Scholar 

  18. Fu K, Fan D-P, Ji G-P, Zhao Q (2020) JL-DCF: joint learning and densely-cooperative fusion framework for RGB-D salient object detection

  19. Fuentes-Hurtado F, Naranjo V, Diego-Mas JA, Alcañiz M (2019) A hybrid method for accurate iris segmentation on at-a-distance visible-wavelength images. EURASIP Journal on Image and Video Processing 2019(1):75

    Article  Google Scholar 

  20. Gonzalez RC, Woods RE (1992) Digital image processing, 2nd edition. Prentice Hall Professional Technical Reference (April 30, 1992)

  21. IITD_iris_databases (2019) http://www.iitd.ac.in/. Accessed 2 August 2019

  22. Jan F (2014) Development And Analysis of Robust Iris Segmentation Algorithms for Non Ideal Iris Recognition System. PhD Thesis COMSATS Univeristy Islamabad 2014

  23. Jan F, Usman I, Agha S (2012) Iris localization in frontal eye images for less constrained iris recognition systems. Digital Signal Processing 22(6):971–986

    Article  MathSciNet  Google Scholar 

  24. Jan F, Usman I, Agha S (2013) Reliable iris localization using Hough transform, histogram-bisection, and eccentricity. Signal Process 93(1):230–241

    Article  Google Scholar 

  25. Jan F, Usman I, Khan SA (2013) Robust iris biometric system for visible wavelength data. Chin Opt Lett 11(8):081501

    Article  Google Scholar 

  26. Jeong DS, Hwang JW, Kang BJ, Park KR, Won CS, Park D-K, Kim J (2010) A new iris segmentation method for non-ideal iris images. Image Vis Comput 28(2):254–260

    Article  Google Scholar 

  27. Ji Y, Wang S, Lu Y, Wei J, Zhao Y (2018) Eye and mouth state detection algorithm based on contour feature extraction. Journal of Electronic Imaging 27:1

    Google Scholar 

  28. Kang J-S (2010) Mobile iris recognition systems: an emerging biometric technology. Procedia Computer Science 1(1):475–484

    Article  Google Scholar 

  29. Khan TM, Aurangzeb Khan M, Malik SA, Khan SA, Bashir T, Dar AH (2011) Automatic localization of pupil using eccentricity and iris using gradient based method. Opt Lasers Eng 49(2):177–187

    Article  Google Scholar 

  30. Lagrange_Interpolating_Polynomial (n.d.) Lagrange Interpolating Polynomial. https://en.wikipedia.org/wiki/Lagrange_polynomial. Accessed 24 May 2021

  31. Li P, Ma H (2012) Iris recognition in non-ideal imaging conditions. Pattern Recognition Letters - PRL 33

  32. Li Y, Hu H, Zhou G (2018) Using Data Augmentation in Continuous Authentication on Smartphones. IEEE Internet of Things Journal 2018, PP:1–1

  33. Li Y, Hu H, Zhou G, Deng S (2018) Sensor-based Continuous Authentication Using Cost-Effective Kernel Ridge Regression. IEEE Access 2018, PP:1–1

  34. Li YH, Huang PJ, Juan Y (2019) An efficient and robust Iris segmentation algorithm using deep learning. Mob Inf Syst 2019:1–14

    Google Scholar 

  35. Li Y, Hu H, Zhu Z, Zhou G (2020) SCANet: sensor-based continuous authentication with two-stream convolutional neural networks. ACM Transactions on Sensor Networks 16:1–27

    Article  Google Scholar 

  36. Li Y, Zou B, Deng S, Zhou G (2020) Using Feature Fusion Strategies in Continuous Authentication on Smartphones. IEEE Internet Computing 2020, PP:1–1.

  37. Ma L, Li H, Yu K (2020) Fast iris localization algorithm on noisy images based on conformal geometric algebra. Digital Signal Processing 100:102682

    Article  Google Scholar 

  38. Marco L, Dario D, Tommaso DM, Cosimo D (2013) Unsupervised approach for the accurate localization of the pupils in near-frontal facial images. Journal of Electronic Imaging 22(3):033033

    Article  Google Scholar 

  39. Mehmood A, Khan M, Sharif M, Khan S, Shaheen M, Saba T, Riaz N, Ashraf I (2020) Prosperous human gait recognition: an end-to-end system based on pre-trained CNN features selection. Multimed Tools Appl

  40. Min-Allah N, Alrashed S (2020) Smart campus—a sketch. Sustain Cities Soc 59:102231

    Article  Google Scholar 

  41. Min-Allah N, Qureshi MB, Alrashed S, Rana OF (2019) Cost efficient resource allocation for real-time tasks in embedded systems. Sustain Cities Soc 48:101523

    Article  Google Scholar 

  42. Min-Allah N, Qureshi MB, Jan F, Alrashed S, Taheri J (2020) Deployment of real-time systems in the cloud environment. J Supercomput

  43. MMU_database (2020) MMU database; http://pesona.mmu.edu.my/~ccteo/. Accessed 13 Jan 2020

  44. MMU_Iris_Database (n.d.) https://www.cs.princeton.edu/~andyz/downloads/MMUIrisDatabase.zip.

  45. Nguyen K, Fookes C, Jillela R, Sridharan S, Ross A (2017) Long range iris recognition: a survey. Pattern Recogn 72:123–143

    Article  Google Scholar 

  46. Ogla R, Ogla A, Abdul Hussien A, Mahmood M (2017) Face detection by using OpenCV's Viola-Jones algorithm based on coding eyes. Iraqi Journal of Science 58:735–745

    Google Scholar 

  47. OpenCV (2020) https://opencv.org/. Accessed 7/4/2020

  48. Orman Z, Battal A, Kemer E (2011) A study on face, eye detection and gaze estimation. International Journal of Computer Science & Engineering Survey 2:29–46

    Article  Google Scholar 

  49. Prabhakar SAH (2018) Eye Segmentation Using Viola-Jones Algorithm on FMM Compressed Images for Aiding Eye Gaze Analysis. Journal of Advanced Research in Dynamical and Control Systems 10:1837–1842

    Google Scholar 

  50. Pundlik S, Woodard D, Birchfield S (2010) Iris segmentation in non-ideal images using graph cuts. Image Vis Comput 28(12):1671–1681

    Article  Google Scholar 

  51. Salah AA (2009) Face authentication for an activity-related biometrics system. In: Signal Processing and Communications Applications Conference, 2009 SIU 2009 IEEE 17th: 9–11 April 2009 2009; 712–715

  52. Sardar M, Mitra S, Shankar BU (2018) Iris localization using rough entropy and CSA: a soft computing approach. Appl Soft Comput 67:61–69

    Article  Google Scholar 

  53. Sharif M, Khan M, Tahir M, Yasmin M, Saba T, Tanik U (2020) A machine learning method with threshold based parallel feature fusion and feature selection for automated gait recognition. Journal of Organizational and End User Computing 32:67–92

    Article  Google Scholar 

  54. Soliman NF, Mohamed E, Magdi F, El-Samie FEA, Muhmmad A (2017) Efficient iris localization and recognition. Optik - International Journal for Light and Electron Optics 140:469–475

    Article  Google Scholar 

  55. UBIRIS_database (2020) UBIRIS database; http://iris.di.ubi.pt/. Accessed 13 Jan 2020

  56. Utaminingrum F, Prasetya R, Arum Sari Y (2017) Image processing for rapidly eye detection based on robust Haar sliding window. International Journal of Electrical and Computer Engineering 07

  57. Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154

    Article  Google Scholar 

  58. Vyas R, Kanumuri T, Sheoran G (2018) An Approach for Iris Segmentation in Constrained Environments. In: Panigrahi B, Hoda M, Sharma V, Goel S (eds) Nature Inspired Computing Advances in Intelligent Systems and Computing, vol 652 Springer, Singapore. https://www.researchgate.net/publication/320213979_An_Approach_for_Iris_Segmentation_in_Constrained_Environments. Accessed 24 May 2021

  59. Vyas R, Kanumuri T, Sheoran G (2018) An approach for Iris segmentation in constrained environments. In: Nature inspired computing: 2018// 2018. Springer Singapore, Singapore, pp 99–107

    Chapter  Google Scholar 

  60. Wang Y-Q (2014) An analysis of the Viola-Jones face detection algorithm. Image Processing On Line 4:128–148

    Article  Google Scholar 

  61. Wang Q, Liu Z, Tong S, Yang Y, Zhang X (2017) Efficient Iris localization via optimization model. Math Probl Eng 2017:7952152

    Article  Google Scholar 

  62. Wang T, Piao Y, Lu H, Li X, Zhang L (2019) Deep learning for light field saliency detection

  63. Wildes RP (1997) Iris recognition: an emerging biometric technology. Proc IEEE 85(9):1348–1363

    Article  Google Scholar 

  64. Yadav KS, Singha J (2020) Facial expression recognition using modified Viola-John’s algorithm and KNN classifier. Multimed Tools Appl 79(19):13089–13107

    Article  Google Scholar 

  65. Zhang L, Zhang J, Lin Z, Lu H, He Y (2019) CapSal: leveraging captioning to boost semantics for salient object detection

  66. Zhang J, Fan D-P, Dai Y, Anwar S, Saleh F, Zhang T, Barnes N (2020) UC-net: uncertainty inspired RGB-D saliency detection via conditional Variational autoencoders

Download references

Acknowledgments

Authors are thankful to the Deanship of Scientific Research (DSR), Imam Abdulrahman Bin Faisal University (IAU) for generous funding. Authors are also thankful to the Chinese Academy of Sciences and Malaysia Multimedia University whose iris databases have been utilized in this study.

Funding

The Deanship of Scientific Research (DSR), Imam Abdulrahman Bin Faisal University (IAU) has funded this study under project numbered 2019–359-CSIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farmanullah Jan.

Ethics declarations

Conflict of interest

On behalf of all authors, corresponding author declares that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, F., Alrashed, S. & Min-Allah, N. Iris segmentation for non-ideal Iris biometric systems. Multimed Tools Appl 83, 15223–15251 (2024). https://doi.org/10.1007/s11042-021-11075-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11075-9

Keywords

Navigation