Skip to main content
Log in

Reversible data hiding scheme based on the Haar discrete wavelet transform and interleaving prediction method

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Although many data hiding schemes have been proposed in the frequency domain, the tradeoff between hiding capacity and image quality is still an existing problem to be solved. In this paper, we proposed a novel reversible data hiding scheme based on the Haar discrete wavelet transform (DWT) and interleaving-prediction method. First, a one-level Haar discrete wavelet transform (DWT) is implemented to the cover image, and four sub-bands, LL ,  HL ,  LH and HH, are obtained. Sub-bands HL, LH  and HH are chosen for embedding. After that, the wavelet coefficients of the chosen sub-bands are zig-zag scanned and two adjacent coefficients are used for prediction. The secret data is embedded in the prediction errors, which is the difference between the original value and the predicted value of the wavelet coefficients. The experimental results showed that our scheme has good performance compared with other existing reversible data hiding schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156

    Article  MathSciNet  Google Scholar 

  2. Al-Qershi OM, Khoo BE (2013) Two-dimensional difference expansion (2D-DE) scheme with a characteristics-based threshold. Signal Process 93(1):154–162

    Article  Google Scholar 

  3. Al-Qershi OM, Khoo BE (2014) Controlling hiding capacity using image characteristics with a 2D-DE data hiding scheme. AEU Int J Electron Commun 68(4):346–350

    Article  Google Scholar 

  4. Calderbank AR, Daubechies I, Sweldens W, Yeo BL (1998) Wavelet transforms that map integers to integers. Appl Comput Harmon Anal 5:332–369

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan YK, Chen WT, Yu SS, Ho YA, Tsai CS, Chu YP (2009) A HDWT-based reversible data hiding method. J Syst Softw 82(3):411–421

    Article  Google Scholar 

  6. Chang CC, Lin CC, Tseng CS, Tai WL (2007) Reversible hiding in DCT-based compressed images. Inf Sci 177(13):2768–2786

    Article  Google Scholar 

  7. Chang CC, Chou YC, Kieu D (2008) An information hiding scheme using Sudoku. In: The 3rd Int Conf on Innovative Computing Information and Control. Liaoning, Dalian

  8. Chang CC, Pai PY, Yeh CM, Chan YK (2010) A high payload frequency-based reversible image hiding method. Inf Sci 180(11):2286–2298

    Article  Google Scholar 

  9. Chen B, Zhang WM, Ma KD, Yu NH (2014) Recursive code construction for reversible data hiding in DCT domain. Multimed Tools Appl 72:1985–2009

    Article  Google Scholar 

  10. Chui CK (ed) (1992) Wavelets: a tutorial in theory and applications. Academic, San Diego

    MATH  Google Scholar 

  11. Daubechies I, Sweldens W (1998) Factoring wavelet transforms into lifting steps. J Fourier Anal Appl 4(3):351–353

    Article  MathSciNet  MATH  Google Scholar 

  12. Dragoi IC, Coltuc D (2014) Local-prediction-based difference expansion reversible watermarking. IEEE Trans Image Process 23(4):1779–1790

    Article  MathSciNet  MATH  Google Scholar 

  13. Fridrich J, Goljan M, Du R (2002) Lossless data embedding for all image formats. In: Proc. SPIE, pp 572–583

  14. Hsu FH, Wu MH, Yang CH, Wang SJ (2014) Image reversibility in data embedding on the basis of blocking-predictions. Peer-to-Peer Networking Appl 7(4):723–736

    Article  Google Scholar 

  15. Huang FJ, Qu XC, Kim HJ, Member HJW (2016) Reversible data hiding in JPEG images. IEEE Trans Circuits Syst Video Technol 26(9):1610–1621

    Article  Google Scholar 

  16. Ker A (2005) Improved detection of LSB steganography in grayscale images. Inf Hiding Lect Notes Comput Sci 3200:97–115

    Article  Google Scholar 

  17. Kim HJ, Sachnev V, Shi YQ, Nam J, Choo HG (2008) A novel difference expansion transform for reversible data embedding. IEEE Trans Inf Forensics Secur 4(3):456–465

    Google Scholar 

  18. Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20(12):3524–3533

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin CC, Tai LW, Chang CC (2008) Multilevel reversible data hiding based on histogram modification of difference images. Pattern Recogn 41(12):3582–3591

    Article  MATH  Google Scholar 

  20. Lin YK (2012) High capacity reversible data hiding scheme based upon discrete cosine transformation. J Syst Softw 85(10):2395–2404

    Article  Google Scholar 

  21. Luo T, Jiang GY, Yua M, Xu HY, Shao F (2016) Inter-view local texture analysis based stereo image reversible data hiding. Digital Signal Process 48:116–129

    Article  MathSciNet  Google Scholar 

  22. Mao Q, Li F, Chang CC (2015) Reversible data hiding with oriented and minimized distortions using cascading trellis coding. Inf Sci 317:170–180

    Article  Google Scholar 

  23. Mielikainen J (2006) LSB matching revisited. IEEE Signal Process Lett 13(5):285–287

    Article  Google Scholar 

  24. Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  25. Qian Z, Zhang X (2012) Lossless data hiding in JPEG bitstream. J Syst Softw 85(2):309–313

    Article  Google Scholar 

  26. Shen SY, Huang LH (2015) A data hiding scheme using pixel value differencing and improving exploiting modification directions. Comput Secur 48:131–141

    Article  Google Scholar 

  27. Tai WL, Yeh CM, Chang CC (2009) Reversible data hiding based on histogram modification of pixel differences. IEEE Trans Circuits Syst Video Technol 19(6):906–910

    Article  Google Scholar 

  28. Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730

    Article  MathSciNet  Google Scholar 

  29. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  30. Tsai P, Hu YC, Yeh HL (2009) Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process 89(6):1129–1143

    Article  MATH  Google Scholar 

  31. Tseng HW, Hsieh CP (2009) Prediction-based reversible data hiding. Inf Sci 179(14):2460–2469

    Article  MATH  Google Scholar 

  32. Vignesh Kumar PR (2016) Reversible data hiding using texture synthesis approach. International Conference on Circuit, Power and Computing Technologies [ICCPCT]

  33. Wu HZ, Wang HX, Shi YQ PPE-based reversible data hiding. IH&MMSec '16 Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 187–188

  34. Xuan G, Yang C, Zhen Y, Shi Y, Ni Z (2005) Reversible data hiding using integer wavelet transform and companding technique. Digital Watermarking Lect Notes Comput Sci 3304:115–124

    Article  Google Scholar 

  35. Yang HC, Tsai HM (2010) Improving histogram-based reversible data hiding by interleaving predictions. IET Image Process 4(4):223–234

    Article  Google Scholar 

  36. Zhang X, Wang S (2006) Efficient steganographic embedding by exploiting modification direction. IEEE Commun Lett 10(11):1–3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Chen Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Mao, Q. & Chang, CC. Reversible data hiding scheme based on the Haar discrete wavelet transform and interleaving prediction method. Multimed Tools Appl 77, 5149–5168 (2018). https://doi.org/10.1007/s11042-017-4388-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4388-4

Keywords

Navigation