Skip to main content
Log in

Genetic risk factors for myocardial infarction more clearly manifest for early age of first onset

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Epidemiological genetics established that heritability in determining the risk of myocardial infarction (MI) is substantially greater when MI occurs early in life. However, the genetic architecture of early-onset and late-onset MI was not compared. We analyzed genotype frequencies of SNPs in/near 20 genes whose protein products are involved in the pathogenesis of atherosclerosis in two groups of Russian patients with MI: the first group included patients with age of first MI onset <60 years (N = 230) and the second group with onset ≥60 years (N = 174). The control group of corresponding ethnicity consisted of 193 unrelated volunteers without cardiovascular diseases (93 individuals were over 60 years). We found that in the group of patients with age of onset <60 years, SNPs FGB rs1800788*T, TGFB1 rs1982073*T/T, ENOS rs2070744*C and CRP rs1130864*T/T were associated with risk of MI, whereas in patients with age of onset ≥60 years, only TGFB1 rs1982073*T/T was associated with risk of MI. Using APSampler software, we found composite markers associated with MI only in patients with early onset: FGB rs1800788*T + TGFB1 rs1982073*T; FGB rs1800788*T + LPL rs328*C + IL4 rs2243250*C; FGB rs1800788*T + ENOS rs2070744*C (Fisher p values of 1.4 × 10−6 to 2.2 × 10−5; the permutation p values of 1.1 × 10−5 to 3.0 × 10−4; ORs = 2.67–2.54). Alleles included in the combinations were associated with MI less significantly and with lower ORs than the combinations themselves. The result showed a substantially greater contribution of the genetic component in the development of MI if it occurs early in life, and demonstrated the usefulness of genetic testing for young people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Rosamond W, Flegal K, Furie K Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell C, Roger V, Sorlie P, Steinberger J, Thom T, Wilson M, Hong Y (2008) Heart disease and stroke statistics-2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117(4):e25–e146. doi:10.1161/CIRCULATIONAHA.107.187998

    Article  PubMed  Google Scholar 

  2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2014) Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129(3):e28–e292. doi:10.1161/01.cir.0000441139.02102.80

    Article  PubMed  Google Scholar 

  3. Roberts R (2014) Genetics of coronary artery disease. Circ Res 114(12):1890–1903. doi:10.1161/CIRCRESAHA.114.302692

    Article  CAS  PubMed  Google Scholar 

  4. Dai X, Wiernek S, Evans JP, Runge MS (2016) Genetics of coronary artery disease and myocardial infarction. World J Cardiol 8(1):1–23. doi:10.4330/wjc.v8.i1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, Jonasdottir A, Sigurdsson A, Baker A, Palsson A, Masson G, Gudbjartsson DF, Magnusson KP, Andersen K, Levey AI, Backman VM, Matthiasdottir S, Jonsdottir T, Palsson S, Einarsdottir H, Gunnarsdottir S, Gylfason A, Vaccarino V, Hooper WC, Reilly MP, Granger CB, Austin H, Rader DJ, Shah SH, Quyyumi AA, Gulcher JR, Thorgeirsson G, Thorsteinsdottir U, Kong A, Stefansson K (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316(5830):1491–1493. doi:10.1126/science.1142842

    Article  CAS  PubMed  Google Scholar 

  6. Aoki A, Ozaki K, Sato H, Takahashi A, Kubo M, Sakata Y, Onouchi Y, Kawaguchi T, Lin TH, Takano H, Yasutake M, Hsu PC, Ikegawa S, Kamatani N, Tsunoda T, Juo SH, Hori M, Komuro I, Mizuno K, Nakamura Y, Tanaka T (2011) SNPs on chromosome 5p15.3 associated with myocardial infarction in Japanese population. J Hum Genet 56(1):47–51. doi:10.1038/jhg.2010.141

    Article  CAS  PubMed  Google Scholar 

  7. Yamada Y, Nishida T, Ichihara S, Sawabe M, Fuku N, Nishigaki Y, Aoyagi Y, Tanaka M, Fujiwara Y, Yoshida H, Shinkai S, Satoh K, Kato K, Fujimaki T, Yokoi K, Oguri M, Yoshida T, Watanabe S, Nozawa Y, Hasegawa A, Kojima T, Han BG, Ahn Y, Lee M, Shin DJ, Lee JH, Jang Y (2011) Association of a polymorphism of BTN2A1 with myocardial infarction in East Asian populations. Atherosclerosis 215(1):145–152. doi:10.1016/j.atherosclerosis.2010.12.005

    Article  CAS  PubMed  Google Scholar 

  8. Hirokawa M, Morita H, Tajima T, Takahashi A, Ashikawa K, Miya F, Shigemizu D, Ozaki K, Sakata Y, Nakatani D, Suna S, Imai Y, Tanaka T, Tsunoda T, Matsuda K, Kadowaki T, Nakamura Y, Nagai R, Komuro I, Kubo M (2015) A genome-wide association study identifies PLCL2 and AP3D1-.1L-SF3A2 as new susceptibility loci for myocardial infarction in Japanese. Eur J Hum Genet 23(3):374–380. doi:10.1038/ejhg.2014.110

    Article  CAS  PubMed  Google Scholar 

  9. Reilly MP, Li M, He J, Ferguson JF, Stylianou IM, Mehta NN, Burnett MS, Devaney JM, Knouff CW, Thompson JR, Horne BD, Stewart AF, Assimes TL, Wild PS, Allayee H, Nitschke PL, Patel RS, Myocardial Infarction Genetics Consortium, Wellcome Trust Case Control Consortium, Martinelli N, Girelli D, Quyyumi AA, Anderson JL, Erdmann J, Hall AS, Schunkert H, Quertermous T, Blankenberg S, Hazen SL, Roberts R, Kathiresan S, Samani NJ, Epstein SE, Rader DJ (2011) Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet 377(9763):383–392. doi:10.1016/S0140-6736(10)61996-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Myocardial Infarction Genetics Consortium et al (2009) Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 41(3):334–341. doi:10.1038/ng.327

    Article  PubMed Central  Google Scholar 

  11. Nora JJ, Lortscher RH, Spangler RD, Nora AH, Kimberling WJ (1980) Genetic—epidemiologic study of early-onset ischemic heart disease. Circulation 61(3):503–508

    Article  CAS  PubMed  Google Scholar 

  12. Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U (1994) Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med 330(15):1041–1046

    Article  CAS  PubMed  Google Scholar 

  13. Zdravkovic S, Wienke A, Pedersen NL, Marenberg ME, Yashin AI, De Faire U (2002) Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins. J Int Med 252(3):247–254. doi:10.1046/j.1365-2796.2002.01029.x

    Article  CAS  Google Scholar 

  14. Smith JG, Newton-Cheh C (2015) Genome-wide association studies of late-onset cardiovascular disease. J Mol Cell Cardiol 83:131–141. doi:10.1016/j.yjmcc.2015.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tomaiuolo R, Bellia C, Caruso A, Di Fiore R, Quaranta S, Noto D, Cefalù AB, Di Micco P, Zarrilli F, Castaldo G, Averna MR, Ciaccio M (2012) Prothrombotic gene variants as risk factors of acute myocardial infarction in young women. J Transl Med 10:235. doi:10.1186/1479-5876-10-235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schildkraut JM, Myers RH, Cupples LA, Kiely DK, Kannel WB (1989) Coronary risk associated with age and sex of parental heart disease in the Framingham Study. Am J Cardiol 64(10):555–559

    Article  CAS  PubMed  Google Scholar 

  17. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Writing Group on the Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction, Thygesen K, Alpert JS, White HD, Jaffe AS, Katus HA, Apple FS, Lindahl B, Morrow DA, Chaitman BA, Clemmensen PM, Johanson P, Hod H, Underwood R, Bax JJ, Bonow RO, Pinto F, Gibbons RJ, Fox KA, Atar D, Newby LK, Galvani M, Hamm CW, Uretsky BF, Steg PG, Wijns W, Bassand JP, Menasché P, Ravkilde J, Ohman EM, Antman EM, Wallentin LC, Armstrong PW, Simoons ML, Januzzi JL, Nieminen MS, Gheorghiade M, Filippatos G, Luepker RV, Fortmann SP, Rosamond WD, Levy D, Wood D, Smith SC, Hu D, Lopez-Sendon JL, Robertson RM, Weaver D, Tendera M, Bove AA, Parkhomenko AN, Vasilieva EJ, Mendis S, ESC Committee for Practice Guidelines (CPG) 2012 Third universal definition of myocardial infarction. Eur Heart J. 33(20):2551–2567. doi:10.1093/eurheartj/ehs184

    Article  PubMed  Google Scholar 

  18. Barsova RM, Lvovs D, Titov BV, Matveeva NA, Shakhnovich RM, Sukhinina TS, Kukava NG, Ruda MY, Karamova IM, Nasibullin TR, Mustafina OE, Osmak GJ, Tsareva EY, Kulakova OG, Favorov AV, Favorova OO (2015) Variants of the coagulation and inflammation genes are replicably associated with myocardial infarction and epistatically interact in Russians. PLoS ONE 10(12):e0144190. doi:10.1371/journal.pone.0144190

    Article  PubMed  PubMed Central  Google Scholar 

  19. Christensen B, Frosst P, Lussier-Cacan S, Selhub J, Goyette P, Rosenblatt DS, Genest J, Rozen R (1997) Correlation of a common mutation in the methylenetetrahydrofolate reductase gene with plasma homocysteine in patients with premature coronary artery disease. Arterioscler Thromb Vasc Biol 17(3):569–573. doi:10.1161/01.ATV.17.3.569

    Article  CAS  PubMed  Google Scholar 

  20. Augeri AL, Tsongalis GJ, Van Heest JL, Maresh CM, Thompson PD, Pescatello LS (2009) The endothelial nitric oxide synthase- 786 T > C polymorphism and the exercise-induced blood pressure and nitric oxide responses among men with elevated blood pressure. Atherosclerosis 204(2):e28–e34. doi:10.1016/j.atherosclerosis.2008.12.015

    Article  CAS  PubMed  Google Scholar 

  21. Shimo-Nakanishi Y, Urabe T, Hattori N, Watanabe Y, Nagao T, Yokochi M, Hamamoto M, Mizuno Y (2001) Polymorphism of the lipoprotein lipase gene and risk of atherothrombotic cerebral infarction in the Japanese. Stroke 32(7):1481–1486. doi:10.1161/01.STR.32.7.1481

    Article  CAS  PubMed  Google Scholar 

  22. Hixson JE, Vernier DT (1990) Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 31(3):545–548

    CAS  PubMed  Google Scholar 

  23. Jannes J, Hamilton-Bruce MA, Pilotto L, Smith BJ, Mullighan CG, Bardy PG, Koblar SA (2004) Tissue plasminogen activator- 7351C/T enhancer polymorphism is a risk factor for lacunar stroke. Stroke 35(5):1090–1094. doi:10.1161/01.STR.0000124123.76658.6c

    Article  CAS  PubMed  Google Scholar 

  24. Favorov AV, Andreewski TV, Sudomoina MA, Favorova OO, Parmigiani G, Ochs MF (2005) A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans. Genetics 171(4):2113–2121. doi:10.1534/genetics.105.048090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lvovs D, Favorova OO, Favorov AV (2012) A polygenic approach to the study of polygenic diseases. Acta Nat 4(3):59–71

    CAS  Google Scholar 

  26. Liu D, Jiang Z, Dai L, Zhang X, Yan C, Han Y (2014) Association between the- 786T > C 1polymorphism in the promoter region of endothelial nitric oxide synthase (eNOS) and risk of coronary artery disease: a systematic review and meta-analysis. Gene 545(1):175–183. doi:10.1016/j.gene.2013.09.099

    Article  CAS  PubMed  Google Scholar 

  27. Sagoo GS, Tatt I, Salanti G, Butterworth AS, Sarwar N, van Maarle M, Jukema JW, Wiman B, Kastelein JJ, Bennet AM, de Faire U, Danesh J, Higgins JP (2008) Seven lipoprotein lipase gene polymorphisms, lipid fractions, and coronary disease: a HuGE association review and meta-analysis. Am J Epidemiol 168(11):1233–1246. doi:10.1093/aje/kwn235

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Project 16-14-10251). Authors are grateful to Patricia Palmer for her help with the English text of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris V. Titov.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 101 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titov, B.V., Osmak, G.J., Matveeva, N.A. et al. Genetic risk factors for myocardial infarction more clearly manifest for early age of first onset. Mol Biol Rep 44, 315–321 (2017). https://doi.org/10.1007/s11033-017-4112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-017-4112-5

Keywords

Navigation