Skip to main content
Log in

Complete mitogenome of the edible sea urchin Loxechinus albus: genetic structure and comparative genomics within Echinozoa

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The edible Chilean red sea urchin, Loxechinus albus, is the only species of its genus and endemic to the Southeastern Pacific. In this study, we reconstructed the mitochondrial genome of L. albus by combining Sanger and pyrosequencing technologies. The mtDNA genome had a length of 15,737 bp and encoded the same 13 protein-coding genes, 22 transfer RNA genes, and two ribosomal RNA genes as other animal mtDNAs. The size of this mitogenome was similar to those of other Echinodermata species. Structural comparisons showed a highly conserved structure, composition, and gene order within Echinoidea and Holothuroidea, and nearly identical gene organization to that found in Asteroidea and Crinoidea, with the majority of differences explained by the inversions of some tRNA genes. Phylogenetic reconstruction supported the monophyly of Echinozoa and recovered the monophyletic relationship of Holothuroidea and Echinoidea. Within Holothuroidea, Bayesian and maximum likelihood analyses recovered a sister-group relationship between Dendrochirotacea and Aspidochirotida. Similarly within Echinoidea, these analyses revealed that L. albus was closely related to Paracentrotus lividus, both being part of a sister group to Strongylocentrotidae and Echinometridae. In addition, two major clades were found within Strongylocentrotidae. One of these clades comprised all of the representative species Strongylocentrotus and Hemicentrotus, whereas the other included species of Mesocentrotus and Pseudocentrotus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kilpert F, Podsiadlowski L (2006) The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features. BMC Genomics 7:241. doi:10.1186/1471-2164-7-241

    Article  PubMed Central  PubMed  Google Scholar 

  3. Gissi C, Iannelli F, Pesole G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity (Edinb) 101:301–320. doi:10.1038/hdy.2008.62

    Article  CAS  Google Scholar 

  4. Yamazaki N, Ueshima R, Terrett JA et al (1997) Evolution of pulmonate gastropod mitochondrial genomes: comparisons of gene organizations of euhadra, cepaea and albinaria and implications of unusual tRNA secondary structures. Genetics 145:749

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Gaitán-Espitia JD, Nespolo RF, Opazo JC (2013) The complete mitochondrial genome of the land snail Cornu aspersum (Helicidae: Mollusca): intra-specific divergence of protein-coding genes and phylogenetic considerations within Euthyneura. PLoS ONE 8:e67299. doi:10.1371/journal.pone.0067299

    Article  PubMed Central  PubMed  Google Scholar 

  6. Knudsen B, Kohn AB, Nahir B et al (2006) Complete DNA sequence of the mitochondrial genome of the sea-slug, Aplysia californica: conservation of the gene order in Euthyneura. Digestion 38:459–469. doi:10.1016/j.ympev.2005.08.017

    CAS  Google Scholar 

  7. Lecanidou R, Douris V, Rodakis GC (1994) Novel features of metazoan mtDNA revealed from sequence analysis of three mitochondrial DNA segments of the land snail Albinaria turrita (Gastropoda: Clausiliidae). J Mol Evol 38:369–382

    Article  CAS  PubMed  Google Scholar 

  8. Boore JL, Brown WM (1998) Big trees from little genomes: mitochondrial phylogenetic tool gene order as a phylogenetic tool. Curr Opin Genet Dev 8:668–674

    Article  CAS  PubMed  Google Scholar 

  9. Lang B, Gray M, Burger G (1999) Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 33:351–397

    Article  CAS  PubMed  Google Scholar 

  10. Perseke M, Golombek A, Schlegel M, Struck TH (2013) The impact of mitochondrial genome analyses on the understanding of deuterostome phylogeny. Mol Phylogenet Evol 66:898–905. doi:10.1016/j.ympev.2012.11.019

    Article  PubMed  Google Scholar 

  11. Fritzsch G, Schlegel M, Stadler PF (2006) Alignments of mitochondrial genome arrangements: applications to metazoan phylogeny. J Theor Biol 240:511–520. doi:10.1016/j.jtbi.2005.10.010

    Article  CAS  PubMed  Google Scholar 

  12. Perseke M, Fritzsch G, Ramsch K et al (2008) Evolution of mitochondrial gene orders in echinoderms. Mol Phylogenet Evol 47:855–864. doi:10.1016/j.ympev.2007.11.034

    Article  CAS  PubMed  Google Scholar 

  13. Boore JL, Macey J (2005) Sequencing and comparing whole mitochondrial genomes of animals. Methods Enzymol 395:311–348

    Article  CAS  PubMed  Google Scholar 

  14. Scouras A, Smith MJ (2006) The complete mitochondrial genomes of the sea lily Gymnocrinus richeri and the feather star Phanogenia gracilis: signature nucleotide bias and unique nad4L gene rearrangement within crinoids. Mol Phylogenet Evol 39:323–334. doi:10.1016/j.ympev.2005.11.004

    Article  CAS  PubMed  Google Scholar 

  15. Shen X, Tian M, Liu Z et al (2009) Complete mitochondrial genome of the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea): the first representative from the subclass Aspidochirotacea with the echinoderm ground pattern. Gene 439:79–86. doi:10.1016/j.gene.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  16. Perseke M, Bernhard D, Fritzsch G et al (2010) Mitochondrial genome evolution in Ophiuroidea, Echinoidea, and Holothuroidea: insights in phylogenetic relationships of Echinodermata. Mol Phylogenet Evol 56:201–211. doi:10.1016/j.ympev.2010.01.035

    Article  CAS  PubMed  Google Scholar 

  17. Oyarzún ST, Marín SL, Valladares C, Iriarte JL (1999) Reproductive cycle of Loxechinus albus (Echinodermata: Echinoidea) in two areas of the Magellan Region (53°S, 70–72°W), Chile. Sci Mar 63:439–449

    Article  Google Scholar 

  18. Cárcamo PF, Candia AI, Chaparro OR (2005) Larval development and metamorphosis in the sea urchin Loxechinus albus (Echinodermata: Echinoidea): effects of diet type and feeding frequency. Aquaculture 249:375–386. doi: 10.1016/j.aquaculture.2005.03.026

  19. Vásquez J, Donoso G (2013) Loxechinus albus. In: Lawrence JM (ed) Sea Urchins Biol. Ecol, vol III. Elsevier, London, pp 285–293

    Chapter  Google Scholar 

  20. Olave S, Bustos E, Lawrence JM, Carcamo P (2001) The effect of size and diet on gonad production by the chilean sea urchin Loxechinus albus. J World Aquac Soc 32:210–214. doi:10.1111/j.1749-7345.2001.tb01097.x

    Article  Google Scholar 

  21. Núñez-Acuña G, Aguilar-Espinoza A, Gallardo-Escárate C (2013) Complete mitochondrial genome of Concholepas concholepas inferred by 454 pyrosequencing and mtDNA expression in two mollusc populations. Comp Biochem Physiol Part D Genomics Proteomics 8:17–23. doi:10.1016/j.cbd.2012.10.004

    Article  PubMed  Google Scholar 

  22. Conesa A, Götz S, García-Gómez JM et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. doi:10.1093/bioinformatics/bti610

    Article  CAS  PubMed  Google Scholar 

  23. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29. doi:10.1038/75556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. doi:10.1093/bioinformatics/bts199

  25. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689. doi:10.1093/nar/gki366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Abascal F, Zardoya R, Telford M (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res 38:W7–W13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Qian G, Zhao Q, Wang AN, et al. (2011) Two new decapod (Crustacea, Malacostraca) complete mitochondrial genomes: bearings on the phylogenetic relationships within the Decapoda. Zool J Linn Soc 162:471–481. doi: 10.1111/j.1096-3642.2010.00686.x

  28. Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701. doi:10.1093/molbev/mss020

    Article  CAS  PubMed  Google Scholar 

  29. Leavitt JR, Hiatt KD, Whiting MF, Song H (2013) Searching for the optimal data partitioning strategy in mitochondrial phylogenomics: a phylogeny of Acridoidea (Insecta: Orthoptera: Caelifera) as a case study. Mol Phylogenet Evol 67:494–508. doi:10.1016/j.ympev.2013.02.019

    Article  CAS  PubMed  Google Scholar 

  30. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi:10.1093/bioinformatics/btl446

    Article  CAS  PubMed  Google Scholar 

  31. Silvestro D, Michalak I (2011) RaxmlGUI: a graphical front-end for RAxML. Org Divers Evol. doi:10.1007/s13127-011-0056-0

    Google Scholar 

  32. Ronquist F, Huelsenbeck J (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi:10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  33. Rambaut A, Drummond A (2009) Tracer: MCMC trace analysis tool v1.5.0

  34. Saha S, Sparks AB, Rago C et al (2002) Using the transcriptome to annotate the genome. Nat Biotechnol 20:508–512. doi:10.1038/nbt0502-508

    Article  CAS  PubMed  Google Scholar 

  35. Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435. doi:10.1007/s13353-011-0057-x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Jex AR, Hu M, Littlewood DTJ et al (2008) Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from single Haemonchus contortus (Nematoda). BMC Genom 9:11. doi:10.1186/1471-2164-9-11

    Article  Google Scholar 

  37. Jex AR, Hall RS, Littlewood DTJ, Gasser RB (2010) An integrated pipeline for next-generation sequencing and annotation of mitochondrial genomes. Nucleic Acids Res 38:522–533. doi:10.1093/nar/gkp883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Goldberg SMD, Johnson J, Busam D et al (2006) A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc Natl Acad Sci USA 103:11240–11245. doi:10.1073/pnas.0604351103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Clark MS, Thorne MA, Vieira FA, et al. (2010) Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing. BMC Genomics 11:362. doi: 10.1186/1471-2164-11-362

  40. Künstner A, Wolf JBW, Backström N et al (2010) Comparative genomics based on massive parallel transcriptome sequencing reveals patterns of substitution and selection across 10 bird species. Mol Ecol 19(Suppl 1):266–276. doi:10.1111/j.1365-294X.2009.04487.x

    Article  PubMed Central  PubMed  Google Scholar 

  41. Luo C, Tsementzi D, Kyrpides N et al (2012) Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS ONE 7:e30087. doi:10.1371/journal.pone.0030087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Gissi C, Pesole G (2003) Transcript mapping and genome annotation of ascidian mtDNA using EST data. Genome Res 13:2203–2212. doi:10.1101/gr.1227803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Samuels AK, Weisrock DW, Smith JJ et al (2005) Transcriptional and phylogenetic analysis of five complete ambystomatid salamander mitochondrial genomes. Gene 349:43–53. doi:10.1016/j.gene.2004.12.037

    Article  CAS  PubMed  Google Scholar 

  44. Yasuike M, Leong J, Jantzen SG et al (2012) Genomic resources for sea lice: analysis of ESTs and mitochondrial genomes. Mar Biotechnol 14:155–166. doi:10.1007/s10126-011-9398-z

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Gaitán-Espitia JD, Hofmann GE (2014) Mitochondrial genome architecture of the giant red sea urchin Mesocentrotus franciscanus (Strongylocentrotidae, Echinoida). Mitochondrial DNA 1736:1–2. doi:10.3109/19401736.2014.908359

    Article  Google Scholar 

  46. Scouras A, Beckenbach K, Arndt A, Smith MJ (2004) Complete mitochondrial genome DNA sequence for two ophiuroids and a holothuroid: the utility of protein gene sequence and gene maps in the analyses of deep deuterostome phylogeny. Mol Phylogenet Evol 31:50–65. doi:10.1016/j.ympev.2003.07.005

    Article  CAS  PubMed  Google Scholar 

  47. Jung G, Choi H-J, Pae S, Lee Y-H (2013) Complete mitochondrial genome of sea urchin: Mesocentrotus nudus (Strongylocentrotidae, Echinoida). Mitochondrial DNA 24:466–468. doi:10.3109/19401736.2013.766181

    Article  CAS  PubMed  Google Scholar 

  48. Cantatore P, Roberti M, Rainaldi G et al (1989) The complete nucleotide sequence, gene organization, and genetic code of the mitochondrial genome of Paracentrotus lividus. J Biol Chem 264:10965–10975

    CAS  PubMed  Google Scholar 

  49. Byrne M, Rowe F, Uthicke S (2010) Molecular taxonomy, phylogeny and evolution in the family Stichopodidae (Aspidochirotida: Holothuroidea) based on COI and 16S mitochondrial DNA. Mol Phylogenet Evol 56:1068–1081. doi:10.1016/j.ympev.2010.04.013

    Article  CAS  PubMed  Google Scholar 

  50. Lee Y-H, Song M, Lee S et al (2004) Molecular phylogeny and divergence time of the Antarctic sea urchin (Sterechinus neumayeri) in relation to the South American sea urchins. Antarct Sci 16:29–36. doi:10.1017/S0954102004001786

    Article  Google Scholar 

  51. Vinnikova VV, Drozdov AL (2011) The ultrastructure of spines in sea urchins of the family Strongylocentrotidae. Biol Bull 38:861–867. doi:10.1134/S1062359011090093

    Article  Google Scholar 

  52. Lee Y-H (2003) Molecular phylogenies and divergence times of sea urchin species of Strongylocentrotidae, Echinoida. Mol Biol Evol 20:1211–1221. doi:10.1093/molbev/msg125

    Article  CAS  PubMed  Google Scholar 

  53. Kober KM, Bernardi G (2013) Phylogenomics of strongylocentrotid sea urchins. BMC Evol Biol 13:88. doi:10.1186/1471-2148-13-88

    Article  PubMed Central  PubMed  Google Scholar 

  54. Gadagkar SR, Rosenberg MS, Kumar S (2005) Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. J Exp Zool B Mol Dev Evol 304:64–74. doi:10.1002/jez.b.21026

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to the editor and the anonymous referees for their constructive suggestions, which considerably improved the quality of the paper. This study was financial supported by Fondo de Fomento al Desarrollo Cientifico y Tecnológico FONDEF D09I1065.  Finally, the Millennium Nucleus Center for the Study of Multiple-drivers on Marine Socio-Ecological Systems (MUSELS) by MINECON Project NC120086 also supported this work during the final stage. J.D.G.E. was supported by FONDECYT-Postdoctoral grant no. 3130381.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leyla Cárdenas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2014_3847_MOESM1_ESM.pdf

Figure S1. Putative secondary structures of 22 tRNAs encoded by the mitochondrial genome of Loxechinus albus. (PDF 468 kb)

(DOCX 85 kb)

(DOCX 54 kb)

(DOCX 85 kb)

(DOCX 86 kb)

(FASTA 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cea, G., Gaitán-Espitia, J.D. & Cárdenas, L. Complete mitogenome of the edible sea urchin Loxechinus albus: genetic structure and comparative genomics within Echinozoa. Mol Biol Rep 42, 1081–1089 (2015). https://doi.org/10.1007/s11033-014-3847-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3847-5

Keywords

Navigation