Skip to main content
Log in

Effects of polymorphisms in the 3′ untranslated region of the porcine PPARGC1A gene on muscle fiber characteristics and meat quality traits

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Peroxisome proliferator-activated receptor γ coactivator 1 α (PPARGC1A) is a transcriptional coactivator that is involved in a variety of biological processes including muscle fiber type composition. Here, we identified two single nucleotide polymorphisms (SNPs; *2690T>C and *2864T>C) and one insertion/deletion in the 3′ untranslated region of porcine PPARGC1A. These SNPs were genotyped by direct sequencing in a total of 439 pigs representing three different pig breeds (Berkshire, n = 156; Yorkshire, n = 163; Landrace, n = 120). We evaluated the effects of diplotypes of individual PPARGC1A 3′UTR SNPs on muscle fiber characteristics and meat quality traits. The *2690T>C polymorphism was significantly associated with the percentage of type I and IIb fibers for both muscle fiber number and area composition (P < 0.05), and also showed a significant association with muscle pH, a parameter of meat quality (P = 0.0188). The *2864T>C polymorphism was also associated with meat quality traits including muscle pH (P = 0.0071), drip loss (P = 0.0006), and lightness (P = 0.0702), but showed no significant association with muscle fiber characteristics. Interestingly, each SNP affected PPARGC1A expression significantly at the protein level but not at the mRNA level, thereby accounting for phenotypic variability among genotypes. Taken together, our data suggest that the *2690T>C and *2864T>C polymorphisms can be used as genetic markers for selection toward improved meat quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fiedler I, Nürnberg K, Hardge T, Nürnberg G, Ender K (2003) Phenotypic variations of muscle fibre and intramuscular fat traits in Longissimus muscle of F2 population Duroc × Berlin Miniature Pig and relationships to meat quality. Meat Sci 63(1):131–139

    Article  PubMed  Google Scholar 

  2. Li HD, Lund MS, Christensen OF, Gregersen VR, Henckel P, Bendixen C (2010) Quantitative trait loci analysis of swine meat quality traits. J Anim Sci 88(9):2904–2912

    Article  PubMed  CAS  Google Scholar 

  3. Fan B, Lkhagvadorj S, Cai W, Young J, Smith RM, Dekkers JC, Huff-Lonergan E, Lonergan SM, Rothschild MF (2010) Identification of genetic markers associated with residual feed intake and meat quality traits in the pig. Meat Sci 84(4):645–650

    Article  PubMed  CAS  Google Scholar 

  4. Markljung E, Braunschweig MH, Karlskov-Mortensen P, Bruun CS, Sawera M, Cho IC, Hedebro-Velander I, Josell A, Lundstrom K, von Seth G, Jorgensen CB, Fredholm M, Andersson L (2008) Genome-wide identification of quantitative trait loci in a cross between Hampshire and Landrace II: meat quality traits. BMC Genet 9:22

    Article  PubMed  Google Scholar 

  5. Klont RE, Brocks L, Eikelenboom G (1998) Muscle fibre type and meat quality. Meat Sci 49(Supplement 1):S219–S229

    Article  Google Scholar 

  6. Brown M (1987) Change in fibre size, not number, in ageing skeletal muscle. Age Ageing 16(4):244–248

    Article  PubMed  CAS  Google Scholar 

  7. Lefaucheur L (2001) Myofiber typing and pig meat production. Slovenian Veterinary Res 38:5–33

    Google Scholar 

  8. Ryu YC, Kim BC (2005) The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle. Meat Sci 71(2):351–357

    Article  PubMed  CAS  Google Scholar 

  9. Ryu YC, Kim BC (2006) Comparison of histochemical characteristics in various pork groups categorized by postmortem metabolic rate and pork quality. J Anim Sci 84(4):894–901

    PubMed  CAS  Google Scholar 

  10. Karlsson AH, Klont RE, Fernandez X (1999) Skeletal muscle fibres as factors for pork quality. Livestock Product Sci 60(2–3):255–269

    Article  Google Scholar 

  11. Rosen ED, Spiegelman BM (2000) Molecular regulation of adipogenesis. Annu Rev Cell Develop Biol 16(1):145–171

    Article  CAS  Google Scholar 

  12. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839

    Article  PubMed  CAS  Google Scholar 

  13. Spiegelman BM, Puigserver P, Wu Z (2000) Regulation of adipogenesis and energy balance by PPARgamma and PGC-1. Int J Obes Relat Metab Disord 24(Suppl 4):S8–S10

    Article  PubMed  CAS  Google Scholar 

  14. Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413(6852):131–138

    Article  PubMed  CAS  Google Scholar 

  15. Medina-Gomez G, Gray S, Vidal-Puig A (2007) Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1). Public Health Nutr 10(10A):1132–1137

    Article  PubMed  Google Scholar 

  16. Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404(6778):652–660

    PubMed  CAS  Google Scholar 

  17. Lin J, Wu H, Tarr PT, Zhang C-Y, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1[alpha] drives the formation of slow-twitch muscle fibres. Nature 418(6899):797–801

    Article  PubMed  CAS  Google Scholar 

  18. Mortensen OH, Frandsen L, Schjerling P, Nishimura E, Grunnet N (2006) PGC-1alpha and PGC-1beta have both similar and distinct effects on myofiber switching toward an oxidative phenotype. Am J Physiol Endocrinol Metab 291(4):E807–E816

    Article  PubMed  CAS  Google Scholar 

  19. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124

    Article  PubMed  CAS  Google Scholar 

  20. Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, LeBrasseur NK, Yan Z, Spiegelman BM (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. J Biol Chem 282(41):30014–30021

    Article  PubMed  CAS  Google Scholar 

  21. Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R, Williams RS (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296(5566):349–352

    Article  PubMed  CAS  Google Scholar 

  22. Kunej T, Wu XL, Berlic TM, Michal JJ, Jiang Z, Dovc P (2005) Frequency distribution of a Cys430Ser polymorphism in peroxisome proliferator-activated receptor-gamma coactivator-1 (PPARGC1) gene sequence in Chinese and Western pig breeds. J Anim Breed Genet 122(1):7–11

    Article  PubMed  CAS  Google Scholar 

  23. Jacobs K, Rohrer G, Van Poucke M, Piumi F, Yerle M, Barthenschlager H, Mattheeuws M, Van Zeveren A, Peelman LJ (2006) Porcine PPARGC1A (peroxisome proliferative activated receptor gamma coactivator 1A): coding sequence, genomic organization, polymorphisms and mapping. Cytogenet Genome Res 112(1–2):106–113

    Article  PubMed  CAS  Google Scholar 

  24. Stachowiak M, Szydlowski M, Cieslak J, Switonski M (2007) SNPs in the porcine PPARGC1a gene: interbreed differences and their phenotypic effects. Cell Mol Biol Lett 12(2):231–239

    Article  PubMed  CAS  Google Scholar 

  25. Kim JM, Lee KT, Lim KS, Park EW, Lee YS, Hong KC (2010) Effects of p.C430S polymorphism in the PPARGC1A gene on muscle fibre type composition and meat quality in Yorkshire pigs. Anim Genet 41(6):642–645

    Article  PubMed  CAS  Google Scholar 

  26. Rohrer GA, Keele JW (1998) Identification of quantitative trait loci affecting carcass composition in swine: I. Fat deposition traits. J Anim Sci 76(9):2247–2254

    PubMed  CAS  Google Scholar 

  27. Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP, Spiegelman BM (2001) Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci USA 98(7):3820–3825

    Article  PubMed  CAS  Google Scholar 

  28. Brooke MH, Kaiser KK (1970) Muscle fiber types: how many and what kind? Arch Neurol 23(4):369–379

    Article  PubMed  CAS  Google Scholar 

  29. Honikel KO (1987) How to measure the water-holding capacity of meat? Recommendation of standardized methods. In: Tarrant PV, Eikelenboom G, Monin G (eds) Evaluation and control of meat quality in pigs. Martinus Nijhoff, Dordrecht, pp 129–142

    Chapter  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  31. Lim DH, Kim J, Kim S, Carthew RW, Lee YS (2008) Functional analysis of dicer-2 missense mutations in the siRNA pathway of Drosophila. Biochem Biophys Res Commun 371(3):525–530

    Article  CAS  Google Scholar 

  32. Zhao R-Q, Yang X-J, Xu Q-F, Wei X-H, Xia D, Chen J (2004) Expression of GHR and PGC-1a in association with changes of MyHC isoform types in longissimus muscle of Erhualian and Large White pigs (Sus scrofa) during postnatal growth. Anim Sci 79:203–211

    CAS  Google Scholar 

  33. Kim J, Bartel DP (2009) Allelic imbalance sequencing reveals that single-nucleotide polymorphisms frequently alter microRNA-directed repression. Nat Biotech 27(5):472–477

    Article  CAS  Google Scholar 

  34. Aoi W, Naito Y, Mizushima K, Takanami Y, Kawai Y, Ichikawa H, Yoshikawa T (2010) The microRNA miR-696 regulates PGC-1α in mouse skeletal muscle in response to physical activity. Am J Physiol Endocrinol Metabolism 298(4):E799–E806

    Article  CAS  Google Scholar 

  35. Safdar A, Abadi A, Akhtar M, Hettinga BP, Tarnopolsky MA (2009) miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS One 4(5):e5610

    Article  PubMed  Google Scholar 

  36. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  PubMed  CAS  Google Scholar 

  37. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

    Article  PubMed  CAS  Google Scholar 

  38. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2(11):e363

    Article  PubMed  Google Scholar 

  39. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284

    Article  PubMed  CAS  Google Scholar 

  40. Nielsen M, Hansen JH, Hedegaard J, Nielsen RO, Panitz F, Bendixen C, Thomsen B (2010) MicroRNA identity and abundance in porcine skeletal muscles determined by deep sequencing. Anim Genet 41(2):159–168

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Next-Generation BioGreen 21 Program, Rural Development Administration, Republic of Korea, to Y.S.L (No. PJ0080892011), and by Brain Korea 21 Project from the Ministry of Education, Science, and Technology of Korea. This work was also supported by the Korea Research Foundation Grant funded by the Korean Government to K.C.H (2009-0076865).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Sik Lee.

Additional information

The authors Jun-Seong Lee, Jun-Mo Kim and Jae-Sang Hong contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 174 kb)

Supplementary material 2 (PDF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JS., Kim, JM., Hong, JS. et al. Effects of polymorphisms in the 3′ untranslated region of the porcine PPARGC1A gene on muscle fiber characteristics and meat quality traits. Mol Biol Rep 39, 3943–3950 (2012). https://doi.org/10.1007/s11033-011-1173-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1173-8

Keywords

Navigation