Skip to main content
Log in

Cloning of phytoene desaturase and expression analysis of carotenogenic genes in persimmon (Diospyros kaki L.) fruits

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Persimmon is a commercially important fruit crop, and the fruit is rich in different kinds of bioactive compounds, among which carotenoids contribute significantly to its color and nutritional value. In this study, the cDNA of phytoene desaturase gene (PDS) was isolated by rapid amplification of cDNA ends (RACE) technique. Sequence analysis indicated that the full-length cDNA of PDS was 2064 bp, encoding 586 amino acids and containing one open reading frame (ORF) of 1761 bp. Homology analysis showed that DkPDS, which had been submitted in GenBank with accession number GU112527, shared high similarities of 80–86% with PDS cloned from other plants. Prediction of deduced proteins showed that there was no signal peptide and transmembrane topological structure in DkPDS. It was a hydrophilic and stable protein, and located in chloroplast. To examine the specific expression patterns of carotenogenic genes we had cloned from persimmon, including phytoene synthase (DkPSY), DkPDS, ζ-carotene desaturase (DkZDS), lycopene β-cyclase (DkLCYB) and β-carotene hydroxylase (DkBCH), real-time quantitative PCR (Q-PCR) was performed in flesh at five different developmental stages. The results revealed that the expression levels of DkPSY, DkPDS and DkZDS gradually increased. Nevertheless, the expression level of DkLCYB was very low and maintained relatively stable. The expression level of DkBCH was also at a low level from stage 1 to 4, and then reached the maximum at stage 5. In addition, the expression level of DkZDS was higher than that of other genes. Carotenoid detection demonstrated that both β-cryptoxanthin and total carotenoids increased with fruit development, and zeaxanthin had little change, but with a sudden increase in final stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

BCH:

β-Carotene hydroxylase

Ct:

Threshold cycle

Da:

Dalton

FAO:

Food and Agriculture Organization

HPLC:

High performance liquid chromatography

LCYB:

Lycopene β-cyclase

LCYE:

Lycopene ε-cyclase

ORF:

Open reading frame

PCR:

Polymerase chain reaction

PDS:

Phytoene desaturase

pI:

Isoelectric point

PSY:

Phytoene synthase

Q-PCR:

Real-time quantitative PCR

RACE:

Rapid amplification of cDNA ends

RT-PCR:

Semi-quantitative reverse transcription polymerase chain reaction

UTR:

Untranslated region

ZDS:

ζ-Carotene desaturase

ZEP:

Zeaxanthin epoxidase

References

  1. Schieber A, Carle R (2005) Occurrence of carotenoid cis-isomers in food: technological, analytical, and nutritional implications. Trends Food Sci Technol 16:416–422

    Article  CAS  Google Scholar 

  2. Tao L, Cheng Q (2004) Novel β-carotene ketolases from non-photosynthetic bacteria for canthaxanthin synthesis. Mol Gen Genomics 272:530–537

    Article  CAS  Google Scholar 

  3. Ren YX, Wang G, Guo YP et al (2005) Introduction on carotenoids. J Shandong Agric Univ 36:48–485 (in Chinese)

    Google Scholar 

  4. Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Ann Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  CAS  Google Scholar 

  5. Penuelas J, Munne-Boseh S (2005) Isoprenoids: an evolutionary pool of photoprotection. Trends Plant Sci 10:166–169

    Article  PubMed  CAS  Google Scholar 

  6. Moehs CP, Tian L, Osteryoung KW et al (2001) Analysis of carotenoids biosynthetic gene expression during marigold petal development. Plant Mol Biol 45:281–293

    Article  PubMed  CAS  Google Scholar 

  7. Ikoma Y, Komatsu A, Kita M et al (2001) Expression of a phytoene synthase gene and characteristic carotenoid accumulation during citrus fruit development. Physiol Plant 111:232–238

    Article  CAS  Google Scholar 

  8. Fraser PD, Truesdale MR, Bird CR et al (2002) Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol 105:405–413

    Google Scholar 

  9. Romer S, Hugueney P, Bouvier F et al (1993) Expression of the genes encoding the early carotenoid biosynthetic enzymes in Capsicum annuum. Biochem Biophys Res Commun 196:1414–1421

    Article  PubMed  CAS  Google Scholar 

  10. Rock CD, Zeevaart JA (1999) The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci USA 88:7496–7499

    Article  Google Scholar 

  11. Xu KS, Zhang Q, Zou QJ (2008) The application of carotenoids in poultry. Poult Sci 9:43–45 (in Chinese)

    Google Scholar 

  12. Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216

    Article  PubMed  CAS  Google Scholar 

  13. Blumberg JB (1995) Considerations of the scientific substantiation for antioxidant vitamins and beta-carotene in disease prevention. Am J Clin Nutr 62:1521–1526

    Google Scholar 

  14. Mayne ST (1996) Beta-carotene, carotenoids, and disease prevention in humans. FASEB J 10:690–701

    PubMed  CAS  Google Scholar 

  15. Arab L, Steck S (2000) Lycopene and cardiovascular disease. Am J Clin Nutr 71:1691S–16915S

    PubMed  CAS  Google Scholar 

  16. Rao LG, Mackinnon ES, Josse RG et al (2007) Lycopene consumption decreases oxidative stress and bone resorption markers in postmenopausal women. Osteoporos Int 18:109–115

    Article  PubMed  CAS  Google Scholar 

  17. Sies H, Stahl W (2004) Nutritional protection against skin damage from sunlight. Annu Rev Nutr 24:173–200

    Article  PubMed  CAS  Google Scholar 

  18. Hughes DA (2001) Dietary carotenoids and human immune function. Nutrition 17:823–827

    Article  PubMed  CAS  Google Scholar 

  19. Mascio PD, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274:532–538

    Article  PubMed  Google Scholar 

  20. Bartley GE, Scolnik PA (1994) Molecular biology of carotenoid biosynthesis in plants. Ann Rev Plant Physiol Plant Mol Biol 45:287–301

    Article  CAS  Google Scholar 

  21. Bartley GE, Scolnik PA (1995) Plant carotenoids: pigments for photoprotection, visual attraction, and human health. Plant Cell 7:1027–1038

    Article  PubMed  CAS  Google Scholar 

  22. Cunningham FX Jr, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Ann Rev Plant Physiol Plant Mol Biol 49:557–583

    Article  CAS  Google Scholar 

  23. Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  PubMed  CAS  Google Scholar 

  24. Galpaz N, Ronen G, Kehava Z et al (2006) A chromoplast-specific carotenoid biosynthetic pathway is revealed by cloning of the tomato white-flower locus. Plant Cell 18:1947–1960

    Article  PubMed  CAS  Google Scholar 

  25. Li ZH, Matthews PD, Burr B et al (1996) Cloning and characterization of a maize cDNA encoding phytoene desaturase, an enzyme of the carotenoid biosynthetic pathway. Plant Mol Biol 30:269–279

    Article  PubMed  CAS  Google Scholar 

  26. Wang F (2007) Clone of full-length cDNA of phytoene desaturase (gene pds) gene in sweet potato (Ipomoea Batatas L.). J Anhui Univ Sci Technol 27:55–58 (in Chinese)

    Google Scholar 

  27. Mann V, Pecker I, Hirschberg J (1994) Cloning and characterization of the gene for phytoene desaturase (Pds) from tomato (Lycopersicon esculentum). Plant Mol Biol 24:429–434

    Article  PubMed  CAS  Google Scholar 

  28. Zhu CF, Yamamura S, Koiwa H et al (2002) cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea. Plant Mol Biol 48:277–285

    Article  PubMed  CAS  Google Scholar 

  29. Zhu YH, Jiang JG, Yan Y et al (2005) Isolation and characterization of phytoene desaturase cDNA involved in β-carotene biosynthetic pathway in Dunaliella salina. J Agric Food Chem 53:5593–5597

    Article  PubMed  CAS  Google Scholar 

  30. Zhu YH, Jiang JG, Lin QS (2005) Cloning and sequence analysis of phytoene desaturase cDNA from Dunaliella salina. Food Ferment Ind 31:21–23 (in Chinese)

    CAS  Google Scholar 

  31. Sun GH, Sui ZH, Zhang XC (2008) Cloning and characterization of the phytoene desaturase (pds) gene-a key enzyme for carotenoids synthesis in Dunaliella (Chlorophyta). J Ocean Univ China 7:311–318

    Article  CAS  Google Scholar 

  32. Bai J, Xu Y, Tang L et al (2004) Isolation and characterization of phytoene desaturase cDNA from stigma of crocus sativus. High Technol Lett 10:21–24

    CAS  Google Scholar 

  33. Chen DF, Peng ZH, Gao ZM (2008) C1oning and expression analysis of PDS gene in Narcissus tazetta var. chinensis. Mol Plant Breed 6:574–578 (in Chinese)

    CAS  Google Scholar 

  34. Bartley GE, Viitanen PV, Pecker I et al (1991) Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoene desaturase, an enzyme of the carotenoid biosynthesis pathway. Proc Natl Acad Sci USA 88:6532–6536

    Article  PubMed  CAS  Google Scholar 

  35. Matsumura H, Takeyama H, Kusakabe E et al (1997) Cloning, sequencing and expressing the carotenoid biosynthesis genes, lycopene cyclase and phytoene desaturase, from the aerobic photosynthetic bacterium Erythrobacter longus sp. strain Och101 in Escherichia coli. Gene 189:169–174

    Article  PubMed  CAS  Google Scholar 

  36. Xu ZJ, Tian B, Sun ZT et al (2007) Identification and functional analysis of a phytoene desaturase gene from the extremely radioresistant bacterium Deinococcus radiodurans. Microbiology 153:1642–1652

    Article  PubMed  CAS  Google Scholar 

  37. Gu HF, Li CM, Xu YJ et al (2008) Structural features and antioxidant activity of tannin from persimmon pulp. Food Res Int 41:208–217

    Article  CAS  Google Scholar 

  38. Ahn HS, Jeon TI, Lee JY et al (2002) Antioxidative activity of persimmon and grape seed extract: in vitro and in vivo. Nutr Res 22:1265–1273

    Article  CAS  Google Scholar 

  39. Sakanaka S, Tachibana Y, Okada Y (2005) Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (Kakinohacha). Food Chem 89:569–575

    Article  CAS  Google Scholar 

  40. Fukuda T, Shibata H (1994) Persimmon calyx extracts as anticonvulsants and to alleviate the side effects of barbituric acid compounds. Patent-Japan Kokai Tokkyo Koho 6:649

    Google Scholar 

  41. Gorinstein S, Zachwieja Z, Folta M et al (2001) Comparative contents of dietary fiber, total phenolics, and minerals in persimmons and apples. J Agric Food Chem 49:952–957

    Article  PubMed  CAS  Google Scholar 

  42. Achiwa Y, Hibasami H, Katsuzaki H et al (1997) Inhibitory effects of persimmon (Diospyros kaki) extract and related polyphenol compounds on growth of human lymphoid leukemia cells. Biosci Biotechnol Biochem 61:1099–1101

    Article  PubMed  CAS  Google Scholar 

  43. Kawase M, Motohashi N, Satoh K et al (2003) Biological activity of persimmon (Diospyros kaki) peel extracts. Phytother Res 17:495–500

    Article  PubMed  Google Scholar 

  44. Mallavadhani UV, Panda AK, Rao YR (1998) Pharmacology and chemotaxonomy of Diospyros. Phytochemistry 49:901–951

    Article  PubMed  CAS  Google Scholar 

  45. Thomas P, Chen TS (1998) Quantitative analyses of major carotenoid fatty acid esters in fruits by liquid chromatography: persimmon and papaya. Food Sci 53:1720–1722

    Google Scholar 

  46. Yonemori K, Sugiura A, Yamada M (2000) Persimmon genetics and breeding. Plant Breed Rev 19:191–225

    Google Scholar 

  47. Crisosto CH, Garner D, Crisosto GM et al (1994) Late harvest and delayed cooling induce internal browning of ‘Ya Li’ and ‘Seuri’ Chinese pears. HortScience 29:667–670

    Google Scholar 

  48. Intelmann D, Jaros D, Rohm H (2005) Identification of color optima of commercial tomato catsup. Eur Food Res Technol 22:662–666

    Article  Google Scholar 

  49. Xu CJ, Chen KS, Zhang B et al (2004) A study on methods for RNA extraction from citrus tissues. J Fruit Sci 21:136–140 (in Chinese)

    Google Scholar 

  50. Zhou CH, Xu CJ, Li X et al (2007) Carotenoids in white and red-fleshed loquat fruits. J Agric Food Chem 55:7822–7830

    Article  PubMed  CAS  Google Scholar 

  51. Xu CJ, Fraser PD, Wang WJ et al (2006) Differences in the carotenoid content of ordinary citrus and lycopene-accumulating mutants. J Agric Food Chem 54:5474–5481

    Article  PubMed  CAS  Google Scholar 

  52. Feng J, Chen X, Wu Y et al (2006) Detection and transcript expression of S-RNase gene associated with self-incompatibility in apricot (Prunus armeniaca L.). Mol Biol Rep 33:215–221

    Article  PubMed  CAS  Google Scholar 

  53. Kudritskaya SE, Fishman GM, Chikovani DM (1984) Carotenoids of the fruit of the subtropical persimmon, variety khachia. Chem Nat Compd 20:369

    Article  Google Scholar 

  54. Yuan B, Xu HL, Leng P (2006) Content and chemical composition of carotenoids in persimmon fruit. Chin Agric Sci Bull 22:277–280 (in Chinese)

    Google Scholar 

  55. Cai J, Song H, Xu L et al (2005) Synthetical development and utilization of the persimmon resource. Food Res Dev 26:115–117 (in Chinese)

    Google Scholar 

  56. Kato M, Ikoma Y, Matsumoto H et al (2004) Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiol 134:824–830

    Article  PubMed  CAS  Google Scholar 

  57. Hou YB, Kang BS, Huang JY (2009) Advances of carotenoid research in plants. China Cucurbits Veg 4:28–31 (in Chinese)

    Google Scholar 

  58. Huang BC, Ji J, Wang G et al (2006) Advances of carotenoid in plants. Tianjin Agric Sci 12:13–17 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (30771491), Postdoctoral Science Foundation of Jiangsu Province (0901055C) and China Postdoctoral Science Foundation (20100471401). We also thank Institute of Agrobiology and Environmental Science, Zhejiang University providing the carotenoid analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, D., Zhou, C., Kong, F. et al. Cloning of phytoene desaturase and expression analysis of carotenogenic genes in persimmon (Diospyros kaki L.) fruits. Mol Biol Rep 38, 3935–3943 (2011). https://doi.org/10.1007/s11033-010-0510-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0510-7

Keywords

Navigation