Skip to main content
Log in

Peptidomics-based study reveals that GAPEP1, a novel small peptide derived from pathogenesis-related (PR) protein of cotton, enhances fungal disease resistance

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Peptides play important roles in many important biological processes. For instance, plant antimicrobial peptides, which are essential components of innate immunity and exert rapid defense response, have a broad activity against pathogenic bacteria, fungi, enveloped viruses, and parasites. Verticillium wilt, caused by the soil-borne fungus Verticillium dahliae, is a destructive vascular disease in plants. In this study, we used mass spectrometry approach to detect and characterize important peptides, especially antimicrobial peptides from roots of Gossypium arboretum and to evaluate their inhibitory activities against phytopathogenic fungi. We have identified a novel small peptide, GAPEP1, which is derived from the N-terminal of Pathogenesis-related protein STH-2 protein and upregulated by V. dahliae inoculation. GAPEP1 is localized in the nucleus and cell membrane. Plants with exogenous treatment or overexpressing GAPEP1 both exhibited enhanced disease resistance as compared with the control group. Our results provide the cotton endogenous peptides library that could potentially be used to develop natural, targeted, and environmentally friendly strategies to enhance the resistance of Gossypium species against biotic attackers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cai YF, He XH, Mo JC, Sun Q, Yang JP et al (2009) Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: a review. Afr J Biotechnol 25:7363–7372

    Google Scholar 

  • Chen JY (2007) Expression analysis of cotton anti-verticillium wilt related genes and preliminary functional research of GhPR10. Dissertation, Chinese Academy of Agricultural Sciences

  • Chen YC, Siems WF, Pearce G, Ryan CA (2008) Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. J Biol Chem 283:11469–11476

    Article  CAS  Google Scholar 

  • Chen YL, Lee CY, Cheng KT, Chang WH, Huang RN, Nam HG, Chen YR (2014) Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. Plant Cell 26:4135–4148

  • Chien PS, Nam HG, Chen YR (2015) A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis. J Exp Bot 66:5301–5313

    Article  CAS  Google Scholar 

  • Constabel CP, Brisson N (1992) The defense-related STH-2 gene product of potato shows race-specific accumulation after inoculation with low concentrations of Phytophthora infestans zoosp. Planta 188:289–295

    Article  CAS  Google Scholar 

  • Crappé J, Criekinge WV, Trooskens G, Hayakawa E, Luyten W (2013) Combining in silico prediction and ribosome profiling in a genome-wide search for novel putatively coding sORFs. BMC Genomics 14:1–12

    Article  Google Scholar 

  • Etchells JP, Provost CM, Mishra L, Turner SR (2013) WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development 140:2224–2234

    Article  CAS  Google Scholar 

  • Farrokhi N, Brusslan JA (2007) Peptidomics: methods and applications. Wiley, New York, pp 67–71

    Google Scholar 

  • Goyal RK, Mattoo AK (2014) Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. Plant Sci 228:135–149

    Article  CAS  Google Scholar 

  • Hanada K, Akiyama K, Sakurai T, Toyoda T, Shinozaki K (2010) sORF finder: a program package to identify small open reading frames with high coding potential. Bioinformatics 26:399–400

    Article  CAS  Google Scholar 

  • Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR (2014) A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408–411

    Article  CAS  Google Scholar 

  • Hsu PY, Calviello L, Wu HL, Li FW, Rothfels CJ (2016) Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. Proc Natl Acad Sci U S A 113:7126–7135

    Article  Google Scholar 

  • Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci U S A 103:10098–10103

    Article  CAS  Google Scholar 

  • Husson SJ, Clynen E, Baggerman G, De LA, Schoofs L (2005) Peptidomics of Caenorhabditis elegans: in search of neuropeptides. Commun Agric Appl Biol Sci 70:153–156

    CAS  PubMed  Google Scholar 

  • Ingolia NT, Ghaemmaghami S, Newman John RS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223

    Article  CAS  Google Scholar 

  • Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802

    Article  CAS  Google Scholar 

  • Jacob RJ (2010) Bioinformatics for LC-MS/MS-based proteomics. In: Cutillas P, Timms J (eds) LC-MS/MS in proteomics. Methods in Molecular Biology (Methods and Protocols). Humana Press, Totowa, pp 61–91

    Chapter  Google Scholar 

  • Klammer AA, Noble WS, Wu CC, MacCoss MJ (2005) Peptide charge state determination for low-resolution tandem mass spectra, Computational Systems Bioinformatics Conference, International IEEE Computer Society(CSB). Stanford, California, pp 175–185

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Lease KA, Walker JC (2006) The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics. Plant Physiol 142:831–838

    Article  CAS  Google Scholar 

  • Lukoszek R, Feist P, Ignatova Z (2016) Insights into the adaptive response of Arabidopsis thaliana to prolonged thermal stress by ribosomal profiling and RNA-Seq. BMC Plant Biol 16:221

    Article  Google Scholar 

  • Mamone G, Ferranti P, Melck D, Tafuro F, Longobardo L, Chianese L, Addeo F (2004) Susceptibility to transglutaminase of gliadin peptides predicted by a mass spectrometry-based assay. FEBS Lett 562:177–182

    Article  CAS  Google Scholar 

  • Matsubayashi Y, Sakagami Y (2006) Peptide hormones in plants. Annu Rev Plant Biol 57:649–674

    Article  CAS  Google Scholar 

  • Matton DP, Brisson N (1989) Cloning, expression, and sequence conservation of pathogenesis-related gene transcripts of potato. Mol Plant Microbe Interact 2:325–331

    Article  CAS  Google Scholar 

  • Murphy E, Smith S, De Smet I (2012) Small signaling peptides in Arabidopsis development: how cells communicate over a short distance. Plant Cell 24:3198–3217

    Article  CAS  Google Scholar 

  • Niarchou A, Alexandridou A, Athanasiadis E, Spyrou G (2013) C-PAmP: large scale analysis and database construction containing high scoring computationally predicted antimicrobial peptides for all the available plant. PLoS One 8:e79728

    Article  CAS  Google Scholar 

  • Odintsova T, Egorov T (2014) Plant antimicrobial peptides. In: Irving H, Gehring C (eds) Plant Signaling Peptides. Signaling and communication in plants, vol 16. Springer, Berlin, Heidelberg, pp 107–133

    Chapter  Google Scholar 

  • Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–897

    Article  CAS  Google Scholar 

  • Pearce G, Moura DS, Stratmann J, Ryan CA (2001) Production of multiple plant hormones from a single polyprotein precursor. Nature 411:817–820

    Article  CAS  Google Scholar 

  • Qu LJ, Li L, Lan Z, Dresselhaus T (2015) Peptide signalling during the pollen tube journey and double fertilization. J Exp Bot 66:5139–5150

    Article  CAS  Google Scholar 

  • Ryan CA, Moura DS (2002) Systemic wound signaling in plants: a new perception. Proc Natl Acad Sci U S A 99:6519–6520

    Article  CAS  Google Scholar 

  • Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS, Alborn HT, Teal PEA (2006) Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci U S A 103:8894–8899

    Article  CAS  Google Scholar 

  • Sink KC, Grey WE (1999) A root-injection method to assess Verticillium wilt resistance of peppermint (Mentha×piperita L.) and its use in identifying resistant somaclones of cv. Black Mitcham. Euphytica 106:223–230

    Article  Google Scholar 

  • Sun TT, Zhang LL, Wang Q, Chun LI, Cheng BJ (2015) Rice peptidomics based on Nano LC-MS/MS analysis. Plant Physiol J 51:1173–1178

    CAS  Google Scholar 

  • Tang J, Han Z, Sun Y, Zhang H, Gong X, Chai J (2015) Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1. Cell Res 25:110–120

    Article  CAS  Google Scholar 

  • Tinoco AD, Saghatelian A (2011) Investigating endogenous peptides and peptidases using peptidomics. Biochemistry 50:7447–7461

    Article  CAS  Google Scholar 

  • Tintor N, Ross A, Kanehara K, Yamada K, Fan L, Kemmerling B, Nürnberger T, Tsuda K, Saijo Y (2013) Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection. Proc Natl Acad Sci U S A 110:6211–6216

    Article  Google Scholar 

  • Yang X, Tschaplinski TJ, Hurst GB, Jawdy S, Abraham PE, Lankford PK, Adams RM, Shah MB, Hettich RL, Lindquist E, Kalluri UC, Gunter LE, Pennacchio C, Tuskan GA (2011) Discovery and annotation of small proteins using genomics, proteomics, and computational approaches. Genome Res 21:634–641

    Article  CAS  Google Scholar 

  • Yuan X, Desiderio DM (2005) Human cerebrospinal fluid peptidomics. J Mass Spectrom 40:176–181

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by a research grant from the Natural Science Foundation of Jiangsu Province for Youths (Grant number BK20170604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Yuan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

Total identified and quantified endogenous peptides observed in cotton roots without and with V. dahliae inoculation. (XLSX 145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, N., Dai, C., Ling, X. et al. Peptidomics-based study reveals that GAPEP1, a novel small peptide derived from pathogenesis-related (PR) protein of cotton, enhances fungal disease resistance. Mol Breeding 39, 156 (2019). https://doi.org/10.1007/s11032-019-1069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-019-1069-1

Keywords

Navigation