Skip to main content

Advertisement

Log in

Fine mapping of BrWax1, a gene controlling cuticular wax biosynthesis in Chinese cabbage (Brassica rapa L. ssp. pekinensis)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The surface of plants is covered with a cuticular wax, which contains a mixture of very-long-chain fatty acid derivatives. This wax layer provides a hydrophobic barrier which reduces non-stomatal water loss and prevents pathogen attack. The biosynthesis pathway of cuticular wax in Arabidopsis is well studied; however, little is known about the synthesis of cuticular wax in Brassica rapa. Genetic analyses indicated that the waxy characteristic is controlled by a single dominant gene. In the present study, preliminary mapping results from an F2 population consisting of 308 recessive individuals showed that the BrWax1 (Brassica Wax) gene is located on linkage group A01. We developed a set of new markers closely linked to the target gene, and used another population of 1,020 recessive F2 individuals to fine-map the BrWax1 gene to a genomic DNA fragment of approximately 86.4 kb. Fifteen genes were identified in this target region. Based on gene annotation, the Bra013809 gene was the candidate for the BrWax1 gene. Quantitative real-time PCR analysis and expression pattern of the two parents showed that the expression level of Bra013809 was much higher in the waxy phenotype than in the glossy phenotype. This result should provide not only important information for functional studies of the BrWax1 gene, but also the starting point for studying the pathway of cuticular wax biosynthesis in Brassica rapa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aarts MGM, Keijzer CJ, Stiekema WJ et al (1995) Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127

    PubMed  CAS  Google Scholar 

  • Baker EA (1982) In: Cutler DJ, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London, pp 139–165

    Google Scholar 

  • Bernard A, Joubès J (2013) Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Progr Lipid Res 52:110–129

    Article  CAS  Google Scholar 

  • Bourdenx B, Bernard A, Domergue F, Pascal S et al (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156:29–45

    Article  PubMed  CAS  Google Scholar 

  • Broun P, Poindexter P, Osborne E et al (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA 10:4706–4711

    Article  Google Scholar 

  • Burow GB, Franks CD, Acosta-Martinez V, Xin ZG (2009) Molecular mapping and characterization of BLMC, a locus for profuse wax (bloom) and enhanced cuticular features of Sorghum (Sorghum bicolor (L.) Moench.). Theor Appl Genet 118:423–431

    Article  PubMed  CAS  Google Scholar 

  • Chen XB, Goodwin M, Boroff VL et al (2003) Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15:1170–1185

    Article  PubMed  CAS  Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Plant Biol 9:331–340

    Google Scholar 

  • Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, Preuss D (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12:2001–2008

    PubMed  CAS  Google Scholar 

  • Hannoufa A, Negruk V, Eisner G et al (1996) The CER3 gene of Arabidopsis thaliana is expressed in leaves, stems, roots, flowers and apical meristems. Plant J 10:459–467

    Article  PubMed  CAS  Google Scholar 

  • Hansen JD, Pyee J, Xia Y et al (1997) The glossy1 locus of maize and an epidermis- specific cDNA from Kleinia odora define a class of receptor-like proteins required for the normal accumulation of cuticular waxes. Plant Physiol 113:1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Haslam TM, Mañas-Fernández A, Zhao LF, Kunst L (2012) Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol 160:1164–1174

    Article  PubMed  CAS  Google Scholar 

  • Holmes MG, Keiller DR (2002) Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant, Cell Environ 25:85–93

    Article  CAS  Google Scholar 

  • Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129:1568–1580

    Article  PubMed  CAS  Google Scholar 

  • Jenks MA, Eigenbrode SD, Lemieux B (2002) Cuticular waxes of Arabidopsis. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MD

    Google Scholar 

  • Jung KH, Han MJ, Lee DY, Lee YS, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim YW, HwangI AG (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18:3015–3032

    Article  PubMed  CAS  Google Scholar 

  • Kannangara R, Branigan C, Liu Y et al (2007) The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19:1278–1294

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Hanhart CJ, Thiel F (1989) A genetic and phenotypic description of eceriferum (cer) mutants in Arabidopsis thaliana. J Hered 80:118–122

    Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    Article  PubMed  CAS  Google Scholar 

  • Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12:721–727

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Mariani M, Wolters-Arts M (2000) Complex waxes. Plant Cell 12:1795–1798

    PubMed  CAS  Google Scholar 

  • Markstädter C, Federle W, Jetter R, Riederer M, Hölldobler B (2000) Chemical composition of the slippery epicuticular wax blooms on Macaranga (Euphorbiac- eae) ant-plants. Chemoecology 10:33–40

    Article  Google Scholar 

  • Martin JT, Juniper BE (1970) The cuticles of plants. Edward Arnold, London

    Google Scholar 

  • Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838

    PubMed  CAS  Google Scholar 

  • Moose S, Sisco P (1996) Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev 10:3018–3027

    Article  PubMed  CAS  Google Scholar 

  • Müller C (2006) Plant-Insect interactions on cuticular surfaces. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Blackwell, Oxford, pp 398–417

    Chapter  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  PubMed  CAS  Google Scholar 

  • Negruk V, Yang P, Subramanian M et al (1996) Molecular cloning and characterization of the CER2 gene of Arabidopsis thaliana. Plant J 9:137–145

    Article  PubMed  CAS  Google Scholar 

  • Oliveira AFM, Meirelles ST, Salatino A (2003) Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss. Anais de Academia Brasileira de Ciencias 75:431–439

    Article  CAS  Google Scholar 

  • Post-Beittenmiller D (1998) The cloned Eceriferum genes of Arabidopsis and the corresponding Glossy genes in maize. Plant Physiol Biochem 36:157–166

    Article  CAS  Google Scholar 

  • Pruitt RE, Vielle-Calzada JP, Ploense SE et al (2000) FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc Natl Acad Sci USA 97:1311–1316

    Article  PubMed  CAS  Google Scholar 

  • Qin BX, Tang D, Huang J, Li M, Wu XR, Lu LL, Wang KJ, Yu HX, Chen JM, Gu MH, Cheng ZK (2011) Rice OsGL1-1 is involved in leaf cuticular wax and cuticle membrane. Mol Plant 4(6):985–995

    Article  PubMed  CAS  Google Scholar 

  • Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032

    Article  PubMed  CAS  Google Scholar 

  • Ristic Z, Jenks MA (2002) Leaf cuticle and water loss in maize lines differing in dehydration avoidance. J Plant Physiol 159:645–651

    Article  CAS  Google Scholar 

  • Rowland O, Lee R, Franke R, Schreiber L, Kunst L (2007) The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS Lett 581:3538–3544

    Article  PubMed  CAS  Google Scholar 

  • Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59:683–707

    Article  PubMed  CAS  Google Scholar 

  • Sieber P, Schorderet M, Ryser U, Buchala A, Kolattukudy P, Metraux J-P, Nawrath C (2000) Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions. Plant Cell 12:721–737

    PubMed  CAS  Google Scholar 

  • Tacke E, Korfhage C, Michel D et al (1995) Transposon tagging of the maize Glossy2 locus with the transposable element En/Spm. Plant J 8:907–917

    Article  PubMed  CAS  Google Scholar 

  • Todd J, Post BD, Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17:119–130

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Liu CY, Wang DX, Liang CH, Zhao KH, Fan JJ (2013) Isolation of resistance gene analogs from grapevine resistant to downy mildew. Sci Hort 150:326–333

    Article  CAS  Google Scholar 

  • Xia Y, Nikolau BJ, Schnable PS (1996) Cloning and characterization of CER2, an Arabidopsis gene that affects cuticular wax accumulation. Plant Cell 8:1291–1304

    PubMed  CAS  Google Scholar 

  • Xia Y, Nikolau BJ, Schnable PS (1997) Developmental and hormonal regulation of the Arabidopsis CER2 gene that codes for a nuclear-localized protein required for the normal accumulation of cuticular waxes. Plant Physiol 115:925–937

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Dietrich CR, Delledonne M et al (1997) Sequence analysis of the cloned glossy8 gene of maize suggests that it may code for a [beta]-ketoacyl reductase required for the biosynthesis of cuticular waxes. Plant Physiol 115:501–510

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Dietrich CR, Lessire R, Nikolau BJ, Schnable PS (2002) The endoplasmic reticulum-associated maize GL8 protein is a component of the acyl-coenzyme A elongase involved in the production of cuticular waxes. Plant Physiol 128:924–934

    Article  PubMed  CAS  Google Scholar 

  • Zhang JY, Broeckling CD, Blancaflor EB et al (2005) Over-expression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689–707

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Nos. 31272157 and 31201625).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Feng.

Additional information

Zhiyong Liu and Hui Feng are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 289 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Liu, Z., Wang, P. et al. Fine mapping of BrWax1, a gene controlling cuticular wax biosynthesis in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Breeding 32, 867–874 (2013). https://doi.org/10.1007/s11032-013-9914-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9914-0

Keywords

Navigation