Skip to main content
Log in

Solid-phase synthesis of reduced selenocysteine tetrapeptides and their oxidized analogs containing selenenylsulfide eight-membered rings

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of protected and reduced forms of model tetrapeptides that mimic the C-terminus of human thioredoxin reductases were obtained in good yields, using solid-phase peptide synthesis (SPPS). SPPS was performed on the Knorr Amide MBHA resin for Fmoc chemistry using especially protected cystein and selenocystein derivatives. All amino acids have been coupled according to the HBTU/HOBt/DIPEA method. Furthermore, the corresponding oxidized peptides containing eight-membered rings with intramolecular S–S and S–Se bridges were prepared via I\(_{2}\)/MeOH or DMSO/TFA oxidation, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Moroder L, Musiol HA, Gotz M, Renner C (2005) Synthesis of single- and multiple-stranded cystine-rich peptides. Biopolymers 80:85–97. doi:10.1002/bip.20174

    Article  PubMed  CAS  Google Scholar 

  2. Kamber B, Hartmann A, Eisler K, Riniker B, Rink H, Sieber P, Rittel W (1980) The synthesis of cystine peptides by iodine oxidation of \(S\)-trityl-cysteine and \(S\)-acetamidomethyl-cysteine peptides. Helv Chim Acta 63:899–915. doi: 10.1002/hlca.19800630418

    Article  CAS  Google Scholar 

  3. Otaka A, Koide T, Shide A, Fujii N (1991) Application of dimethylsulphoxide(DMSO)/trifluoroacetic acid(TFA) oxidation to the synthesis of cystine-containing peptide. Tetrahedron Lett 32: 1223–1226. doi:10.1016/S0040-4039(00)92050-1

    Google Scholar 

  4. Fujii N, Otaka A, Funakoshi S, Bessho K, Watanabe T, Akaji K, Yajima H (1987) Studies on peptides. CLI. Syntheses of cystine-peptides by oxidation of \(S\)-protected cysteine-peptides with thallium(III) trifluoroacetate. Chem Pharm Bull 35:2339–2347. doi: 10.1248/cpb.35.2339

    Article  PubMed  CAS  Google Scholar 

  5. Wessjohann L, Schneider A (2008) Synthesis of selenocysteine and its derivatives with an emphasis on selenenylsulfide (-Se–S-) formation. Chem Biodivers 5:375–388. doi:10.1002/cbdv.200890038

    Article  PubMed  CAS  Google Scholar 

  6. Wallace TJ, Mahon JJ (1965) Reactions of thiols with sulfoxides. III. Catalysis by acids and bases. J Org Chem 30:1502–1506. doi:10.1021/jo01016a039

    Article  CAS  Google Scholar 

  7. Koide T, Otaka A, Fujii N (1993) Investigation of the dimethylsulfoxide-trifluoroacetic acid oxidation system for the synthesis of cystine-containing peptides. Chem Pharm Bull 41:1030–1034. doi:10.1248/cpb.41.1030

    Article  PubMed  CAS  Google Scholar 

  8. Koide T, Itoh H, Otaka A, Yasui H, Kuroda M, Esaki N, Soda K, Fujii N (1993) Synthetic study on selenocystine-containing peptides. Chem Pharm Bull 41:502–506. doi:10.1248/cpb.41.502

    Article  PubMed  CAS  Google Scholar 

  9. Besse D, Moroder L (1997) Synthesis of selenocysteine peptides and their oxidation to diselenide-bridged compounds. J Pept Sci 3:442–453. doi:10.1002/(SICI)1099-1387(199711)3:6>442:AID-PSC122<3.0.CO;2-2

    Google Scholar 

  10. Koide T, Itoh H, Otaka A, Furuya M, Kitajima Y, Fujii N (1993) Syntheses and biological activities of selenium analogs of alpha-rat atrial natriuretic peptide. Chem Pharm Bull 41:1596–1600. doi:10.1248/cpb.41.1596

    Article  PubMed  CAS  Google Scholar 

  11. Brandt W, Wessjohann LA (2005) The functional role of selenocysteine (Sec) in the catalysis mechanism of large thioredoxin reductases: proposition of a swapping catalytic triad including a Sec-His-Glu state. ChemBioChem 6:386–394. doi:10.1002/cbic.200400276

    Article  PubMed  CAS  Google Scholar 

  12. Gromer S, Wessjohann LA, Eubel J, Brandt W (2006) Mutational studies confirm the catalytic triad in the human selenoenzyme thioredoxin reductase predicted by molecular modeling. ChemBioChem 7:1649–1652. doi:10.1002/cbic.200600080

    Article  PubMed  CAS  Google Scholar 

  13. Birringer M, Pilawa S, Flohé L (2002) Trends in selenium biochemistry. Nat Prod Rep 19:693–718. doi:10.1039/b205802m

    Article  PubMed  CAS  Google Scholar 

  14. Gromer S, Eubel JK, Lee BL, Jacob J (2005) Human selenoproteins at a glance. J Cell Mol Life Sci 62:2414–2437. doi:10.1007/s00018-005-5143-y

    Article  CAS  Google Scholar 

  15. Jacob C, Giles GI, Giles NM, Sies H (2003) Sulfur and selenium: the role of oxidation state in protein structure and function. Angew Chem-Int Edit 42:4742–4758. doi:10.1002/anie.200300573

    Article  CAS  Google Scholar 

  16. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443. doi:10.1126/science.1083516

    Article  PubMed  CAS  Google Scholar 

  17. Clayden J, Greeves N, Warren S, Wothers P (eds) (2001) Saturated heterocycles and stereoelectronics. In: Organic chemistry. Oxford University Press, New York, pp 1121–1146

  18. Schneider A, Brandt W, Wessjohann LA (2007) Influence of pH and flanking serine on the redox potential of S–S and S–Se bridges of Cys–Cys and Cys–Sec peptides. Biol Chem 388:1099–1101. doi:10.1515/BC.2007.114

    Article  PubMed  CAS  Google Scholar 

  19. Abbas M, Bethke J, Wessjohann LA (2006) One pot synthesis of selenocysteine containing peptoid libraries by Ugi multicomponent reactions in water. Chem Commun 541–543. doi:10.1039/b514597j

  20. Abbas M, Wessjohann LA (2012) Direct synthesis of sensitive selenocysteine peptides by the Ugi reaction. Org Biomol Chem 10:9330–9333. doi:10.1039/c2ob26552d

    Article  PubMed  CAS  Google Scholar 

  21. Bethke J, Karaghiosoff K, Wessjohann LA (2003) Synthesis of \(N,N\)-disubstituted selenoamides by O/Se-exchange with selenium-Lawesson’s reagent. Tetrahedron Lett 44:6911–6913. doi: 10.1016/S0040-4039(03)01690-3

    Article  CAS  Google Scholar 

  22. Reich HJ, Jasperse CP, Renga JM (1986) Organoselenium chemistry. Alkylation of acid, ester, amide, and ketone enolates with bromomethyl benzyl selenide and sulfide. Preparation of selenocysteine derivatives. J Org Chem 51:2981–2988. doi:10.1021/jo00365a025

    Google Scholar 

  23. Schneider A (2011) In: Wessjohann L (ed) Studies of redox and exchange reactions of (seleno)cysteine peptides and model compounds. Dissertation, Martin Luther University of Halle-Wittenberg, Halle

  24. Holand RJ, Marino SM, Gladyshev VN (2013) Selenocysteine in thiol/disulfide-like exchange reactions. Antioxid Redox Signal 18:1675–1689. doi:10.1089/ars.2012.5013

    Article  Google Scholar 

  25. Harris KM, Flemer S Jr, Hondal RJ (2007) Studies on deprotection of cysteine and selenocysteine side-chain protecting groups. J Pept Sci 13:81–93. doi:10.1002/psc.795

    Article  PubMed  CAS  Google Scholar 

  26. Schroll AL, Hondal RJ, Flemer S Jr (2012) The use of 2,2’-dithiobis(5-nitropyridine) (DTNP) for deprotection and diselenide formation in protected selenocysteine-containing peptides. J Pept Sci 18:155–162. doi:10.1002/psc.1430

    Google Scholar 

  27. Cheng Q, Sandalova T, Lindqvist Y, Arnér ES (2009) Crystal structure and catalysis of the selenoprotein thioredoxin reductase 1. J Biol Chem 284:3998–4008. doi:10.1074/jbc.M807068200

    Article  PubMed  CAS  Google Scholar 

  28. Gaussian 03, Revision C.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala P, Y, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2001) In: Gaussian, Inc., Wallingford

  29. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  30. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211. doi:10.1139/p80-159

    Google Scholar 

  31. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. doi:10.1021/j100096a001

    Article  CAS  Google Scholar 

  32. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the DFG for funding this research as part of the priority program “Selenoproteins”, Grant WE 1467/4-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludger A. Wessjohann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1229 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wessjohann, L.A., Schneider, A., Kaluđerović, G.N. et al. Solid-phase synthesis of reduced selenocysteine tetrapeptides and their oxidized analogs containing selenenylsulfide eight-membered rings. Mol Divers 17, 537–545 (2013). https://doi.org/10.1007/s11030-013-9454-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-013-9454-x

Keywords

Navigation