Skip to main content

Advertisement

Log in

Ecological restoration as a strategy for mitigating and adapting to climate change: lessons and challenges from Brazil

  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

A Correction to this article was published on 14 June 2019

This article has been updated

Abstract

Climate change is a global phenomenon that affects biophysical systems and human well-being. The Paris Agreement of the United Nations Framework Convention on Climate Change entered into force in 2016 with the objective of strengthening the global response to climate change by keeping global temperature rise this century well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase even further to 1.5 °C. The agreement requires all Parties to submit their “nationally determined contributions” (NDCs) and to strengthen these efforts in the years ahead. Reducing carbon emissions from deforestation and forest degradation is an important strategy for mitigating climate change, particularly in developing countries with large forests. Extensive tropical forest loss and degradation have increased awareness at the international level of the need to undertake large-scale ecological restoration, highlighting the need to identify cases in which restoration strategies can contribute to mitigation and adaptation. Here we consider Brazil as a case study to evaluate the benefits and challenges of implementing large-scale restoration programs in developing countries. The Brazilian NDC included the target of restoring and reforesting 12 million hectares of forests for multiple uses by 2030. Restoration of native vegetation is one of the foundations of sustainable rural development in Brazil and should consider multiple purposes, from biodiversity and ecosystem services conservation to social and economic development. However, ecological restoration still presents substantial challenges for tropical and mega-diverse countries, including the need to develop plans that are technically and financially feasible, as well as public policies and monitoring instruments that can assess effectiveness. The planning, execution, and monitoring of restoration efforts strongly depend on the context and the diagnosis of the area with respect to reference ecosystems (e.g., forests, savannas, grasslands, wetlands). In addition, poor integration of climate change policies at the national and subnational levels and with other sectorial policies constrains the large-scale implementation of restoration programs. The case of Brazil shows that slowing deforestation is possible; however, this analysis highlights the need for increased national commitment and international support for actions that require large-scale transformations of the forest sector regarding ecosystem restoration efforts. Scaling up the ambitions and actions of the Paris Agreement implies the need for a global framework that recognizes landscape restoration as a cost-effective nature-based solution and that supports countries in addressing their remaining needs, challenges, and barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 14 June 2019

    The original version of the article unfortunately contained an error.

Notes

  1. Exchange rate on Aug/08/2018 (1 dollar = R$ 3.71)

    Source: Banco Central do Brasil. http://www.bcb.gov.br

  2. Financing to farmers and family farmers to invest in the use of environmental technologies.

  3. Funding Program for the Maintenance and Recovery of Amazonian Biodiversity.

  4. Northeast Environmental Sustainability Financing Program

  5. Midwest Environmental Sustainability Financing Program

References

  • ABRAF (2013) Anuário estatístico ABRAF 2013 ano base 2012/ABRAF, Brasília

  • Afonso SR, Ângelo H (2009) Market of non-wood forest products from Brazilian savanna. Ciência Florestal 19(3):317–328. https://doi.org/10.5902/19805098887

    Article  Google Scholar 

  • Alexander S, Aronson J, Whaley O, Lamb D (2016) The relationship between ecological restoration and the ecosystem services concept. Ecol Soc 21(1):34

    Google Scholar 

  • Almeida E, Sabogal C, Júnior SB (2006) Recuperação de Áreas Alteradas na Amazônia Brasileira: Experiências locais, lições aprendidas e implicações para políticas públicas. CIFOR, Belém

    Google Scholar 

  • Alves-Pinto HN, Latawiec AE, Strassburg BB et al (2017) Reconciling rural development and ecological restoration: strategies and policy recommendations for the Brazilian Atlantic Forest. Land Use Policy 60:419–426

    Google Scholar 

  • Andoh J, Lee Y (2018) Forest transition through reforestation policy integration: a comparative study between Ghana and the Republic of Korea. Forest Policy Econ 90:12–21

    Google Scholar 

  • Araújo SMVG (2017) Desafios do Ibama para a gestão ambiental no Brasil. http://repositorio.ipea.gov.br/handle/11058/7944. Accessed 17 Dec 2018

  • Assunção J, Gandour C, Rocha R (2015) Deforestation slowdown in the Brazilian Amazon: prices or policies? Environ Dev Econ 20(6):697–722

    Google Scholar 

  • Bae JS, Joo RW, Kim Y-S (2012) Forest transition in South Korea: reality, path and drivers. Land Use Policy 29(1):198–207

    Google Scholar 

  • Barbier E (2007) Valuing ecosystem services as productive inputs. Econ Policy 22(49):178–229

    Google Scholar 

  • Barbosa LM, Barbosa JM, Barbosa KC et al (2003) Recuperação florestal com espécies nativas no estado de São Paulo: pesquisas apontam mudanças necessárias. Florestar Estatístico 6(1):28–34

    Google Scholar 

  • Betts RA (2005) Integrated approaches to climate–crop modelling: needs and challenges. Philos Trans R Soc Lond B Biol Sci 360(1463):2049–2065

    Google Scholar 

  • Beutler JF, Bertol I, Veiga M, Wildner LP (2003) Perdas de solo e água num Latossolo Vermelho aluminoférrico submetido a diferentes sistemas de preparo e cultivo sob chuva natural. Rev Bras Ciênc Solo 27:509–517

    Google Scholar 

  • Biringer J (2003) Forest ecosystems threatened by climate change: promoting long-term forest resilience. In: Hansen LJ, Biringer JL, Hoffman JR (eds) Buying time: a user’s manual for building resistance and resilience to climate change in natural systems. WWF, Washington, pp 41–69

    Google Scholar 

  • Biringer J, Hansen LJ (2005) Restoring forest landscapes in the face of climate change. In: Mansourian S, Vallauri D, Dudley N (eds) Forest restoration in landscapes: beyond planting trees. Springer, New York, pp 31–37

    Google Scholar 

  • Blignaut JN, Aronson J (2008) Getting serious about maintaining biodiversity. Conserv Lett 1:12–17

    Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks and the climate benefit of forests. Science 320(5882):1444–1449

    Google Scholar 

  • Brancalion PHS, Viani RA, Calmon M et al (2013) How to organize a large-scale ecological restoration program? The framework developed by the Atlantic Forest Restoration Pact in Brazil. J Sustain For 32(7):728–744

    Google Scholar 

  • Brancalion PHS, Garcia LC, Loyola C et al (2016) A critical analysis of the Native Vegetation Protection Law of Brazil (2012): updates and ongoing initiatives. Natureza Conservação 14(1):1–15

    Google Scholar 

  • Brown AE, Zhang L, McMahon TA et al (2005) A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J Hydrol 310:28–61

    Google Scholar 

  • Buckingham K, Hanson C (2015) The restoration diagnostic case example: South Korea. World Resources Institute. 8 pp. https://www.wri.org/sites/default/files/WRI_Restoration_Diagnostic_Case_Example_SouthKorea.pdf. Accessed 12 Dec 2017

  • Bullock JM, Aronson J, Newton AC, Pywell RF, Rey-Benayas JM (2011) Restoration of ecosystem services and biodiversity. Trends Ecol Evol 26:541–549

    Google Scholar 

  • Calmon M, Brancalion PHS, Paese A, Aronson J, Castro P, da Silva SC, Rodrigues RR (2011) Emerging threats and opportunities for large-scale ecological restoration in the Atlantic Forest of Brazil. Restor Ecol 19(2):154–158

    Google Scholar 

  • Cao S, Zhang J (2015) Political risks arising from the impacts of large-scale afforestation on water resources of the Tibetan Plateau. Gondwana Res 28(2):898–903

    Google Scholar 

  • Cao S, Tian T, Chen L, Dong X, Yu X, Wang G (2010) Damage caused to the environment by reforestation policies in arid and semi-arid areas of China. Ambio 39:279–283

    Google Scholar 

  • Cao S, Chen L, Shankman D, Wang C, Wang X, Zhang H (2011) Excessive reliance on afforestation in China’s arid and semi-arid regions: lessons in ecological restoration. Earth-Sci Rev 104:240–245

    Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez AG, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Corrigendum: biodiversity loss and its impact on humanity. Nature 486:59–67

    Google Scholar 

  • Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320(5882):1458–1460

    Google Scholar 

  • Chazdon RL, Guariguata MR (2016) Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48(6):716–730

    Google Scholar 

  • Chazdon RL, Uriarte M (2016) Natural regeneration in the context of large-scale forest and landscape restoration in the tropics. Biotropica 48(6):707–715

    Google Scholar 

  • Chazdon RL, Broadbent EN, Rozendaal DMA et al (2016) Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci Adv 2(5):1–10

    Google Scholar 

  • Chazdon RL, Brancalion PHS, Lamb D, Laestadius L, Calmon M, Kumar C (2017) A policy-driven knowledge agenda for global forest and landscape restoration. Conserv Lett 10(1):125–132

    Google Scholar 

  • Coe MT, Latrubesse EM, Ferreira ME, Amsler ML (2011) The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry 105(1–3):119–131

    Google Scholar 

  • Crookes DJ, Blignautb JN, de Witc MP et al (2013) System dynamic modelling to assess economic viability and risk trade-offs for ecological restoration in South Africa. J Environ Manag 120:138–147

    Google Scholar 

  • Cunningham SC, Mac Nallyb R, Bakerc PJ et al (2015) Balancing the environmental benefits of reforestation in agricultural regions. Perspect Plant Ecol Evol Syst 17:301–317

    Google Scholar 

  • De Groot R, Blignaut J, van der Ploeg S et al (2013) Benefits of investing in ecosystem restoration. Conserv Biol 27(6):1286–1293

    Google Scholar 

  • de Oliveira JAP (2009) The implementation of climate change related policies at the subnational level: an analysis of three countries. Habitat Int 33(3):253–259

    Google Scholar 

  • Dean W (1996) A ferro e fogo: a história e a devastação da Mata Atlântica brasileira. Cia. das Letras, São Paulo

    Google Scholar 

  • Deng L, Yana W, Zhangb Y, Shangguan Z (2016) Severe depletion of soil moisture following land-use changes for ecological restoration: evidence from northern China. For Ecol Manag 366:1–10

    Google Scholar 

  • Devoto M, Bailey S, Craze P, Memmott J (2012) Understanding and planning ecological restoration of plant-pollinator networks. Ecol Lett 15:319–328

    Google Scholar 

  • Di Gregorio M, Nurrochmat DR, Paavola J, Sari IM et al (2017) Climate policy integration in the land use sector: mitigation, adaptation and sustainable development linkages. Environ Sci Pol 67:35–43

    Google Scholar 

  • Dias RA, Bastazini VAG, Gonçalves MSS, Bonow FC, Müller SC (2013) Shifts in composition of avian communities related to temperate-grassland afforestation in southeastern South America. Iheringia Sér Zool 103(1):12–19

    Google Scholar 

  • Díaz S, Demissew S, Carabias J, Joly C, Lonsdale M, Ash N, Larigauderie A, Adhikari JR, Arico S, Báldi A, Bartuska A, Baste IA, Bilgin A, Brondizio E, Chan KMA, Figueroa VE, Duraiappah A, Fischer M, Hill R, Koetz T, Leadley P, Lyver P, Mace GM, Martin-Lopez B, Okumura M, Pacheco D, Pascual U, Pérez ES, Reyers B, Roth E, Saito O, Scholes RJ, Sharma N, Tallis H, Thaman R, Watson R, Yahara T, Hamid ZA, Akosim C, al-Hafedh Y, Allahverdiyev R, Amankwah E, Asah ST, Asfaw Z, Bartus G, Brooks LA, Caillaux J, Dalle G, Darnaedi D, Driver A, Erpul G, Escobar-Eyzaguirre P, Failler P, Fouda AMM, Fu B, Gundimeda H, Hashimoto S, Homer F, Lavorel S, Lichtenstein G, Mala WA, Mandivenyi W, Matczak P, Mbizvo C, Mehrdadi M, Metzger JP, Mikissa JB, Moller H, Mooney HA, Mumby P, Nagendra H, Nesshover C, Oteng-Yeboah AA, Pataki G, Roué M, Rubis J, Schultz M, Smith P, Sumaila R, Takeuchi K, Thomas S, Verma M, Yeo-Chang Y, Zlatanova D (2015) The IPBES Conceptual Framework—connecting nature and people. Curr Opin Environ Sustain 14:1–16

    Google Scholar 

  • do Nascimento Nadruz V, Gallardo ALCF, Montaño M et al (2018) Identifying the missing link between climate change policies and sectoral/regional planning supported by Strategic Environmental Assessment in emergent economies: lessons from Brazil. Renew Sust Energ Rev 88:46–53

    Google Scholar 

  • Durigan G, Melo ACG (2011) An overview of public policies and research on ecological restoration in the state of São Paulo, Brazil. In: Figueiroa EB (ed) Biodiversity conservation in the Americas: lessons and policy recommendations. Editorial FEN-Universidad de Chile, Santiago, pp 320–355

    Google Scholar 

  • Durigan G, Guerin N, da Costa JN (2013) Ecological restoration of Xingu Basin headwaters: motivations, engagement, challenges and perspectives. Philos Trans R Soc Lond Ser B Biol Sci 368(1619):1–9

    Google Scholar 

  • Faggin JM, Behagel JH (2017) Translating sustainable forest management from the global to the domestic sphere: the case of Brazil. Forest Policy Econ 85(1):22–31

    Google Scholar 

  • Farley KA, Jobbágy EG, Jackson RB (2005) Effects of afforestation on water yield: a global synthesis with implications for policy. Glob Chang Biol 11:1565–1576

    Google Scholar 

  • Fengler FH, Bressane A, Carvalho MM, Longo RM, de Medeiros GA, de Melo WJ, Jakovac CC, Ribeiro AI (2017) Forest restoration assessment in Brazilian Amazonia: a new clustering-based methodology considering the reference ecosystem. Ecol Eng 108:93–99

    Google Scholar 

  • Fernandes GW, Coelho MS, Machado RB, Ferreira ME, Aguiar LMS, Dirzo R, Scariot A, Lopes CR (2016) Afforestation of savannas: an impending ecological disaster. Natureza Conservação 14(2):146–151

    Google Scholar 

  • Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309(5734):570–574

    Google Scholar 

  • Freire JM, Urzedo DI, Piña-Rodrigues FC (2017) A realidade das sementes nativas no Brasil: desafios e oportunidades para a produção em larga escala. Seed News 21(5):24–28

    Google Scholar 

  • Gatica-Saavedra P, Echeverría C, Nelson CR (2017) Ecological indicators for assessing ecological success of forest restoration: a world review. Restor Ecol 25(6):850–857

    Google Scholar 

  • Gibbs HK, Salmon JM (2015) Mapping the world’s degraded lands. Appl Geogr 57:12–21

    Google Scholar 

  • Gibbs HK, Rausch L, Munger J, Schelly I, Morton DC, Noojipady P, Soares-Filho B, Barreto P, Micol L, Walker NF (2015) Brazil’s Soy Moratorium. Science 347(6220):377–378

    Google Scholar 

  • Godar J, Gardner TA, Tizado EJ, Pacheco P (2014) Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon. Proceedings of the National Academy of Sciences 111(43):15591–96. https://doi.org/10.1073/pnas.1322825111

  • Government of Costa Rica—GOCR (2011) Propuesta para la Preparación de Readiness R-PP. Submitted to FCPF April 2011. San José, Costa Rica 1-150pp. https://www.forestcarbonpartnership.org/sites/forestcarbonpartnership.org/files/Documents/PDF/Jan2013/R-PPCostaRica%20(2a).pdf. Accessed 12 Dec 2017

  • Green Climate Fund - GCF (2015) Consideration of funding proposals—Addendum Funding proposal package for FP003. http://www.greenclimate.fund/-/resilience-increase-of-ecosystems-and-communities-through-restoration-of-the-productive-bases-of-salinized-lands?inheritRedirect=true&redirect=%2Fprojects%2Fbrowse-projects

  • Hagger V, Dwyer J, Wilson K (2017) What motivates ecological restoration? Restor Ecol 25(5):832–843

    Google Scholar 

  • Hanson C, Yonavjak L, Clarke C et al (2010) Southern forests for the future. World Resources Institute, Washington. http://wriorg.s3.amazonaws.com/s3fs-public/pdf/southern_forests_for_the_future.pdf. Accessed 12 Dec 2017

  • Harris JA, Hobbs RJ, Higgs E, Aronson J (2006) Ecological restoration and global climate change. Restor Ecol 14(2):170–176. https://doi.org/10.1111/j.1526-100X.2006.00136.x

    Article  Google Scholar 

  • Heikkila T, Gerlak AK (2016) Investigating collaborative processes over time: a 10-year study of the South Florida Ecosystem Restoration Task Force. Am Rev Public Adm 46:180–200

    Google Scholar 

  • Hill R, Grant C, George M (2012) A typology of indigenous engagement in Australian environmental management: implications for knowledge integration and social-ecological system sustainability. Ecol Soc 17:1–17

    Google Scholar 

  • Hobbs RJ, Walker LR, Walker J (2007) Integrating restoration and succession. In: Walker LR, Walker J, Hobbs RJ (eds) Linking restoration and ecological succession. Springer, New York, pp 168–179

    Google Scholar 

  • Holl KD (2017) Research directions in tropical forest restoration. Ann Mo Bot Gard 102(2):237–250

    Google Scholar 

  • Indústria Brasileira de Árvores—Ibá (2014) Anuário da Indústria Brasileira de Árvores. http://www.ipef.br/estatisticas/relatorios/anuario-iba_2014.pdf. Accessed 12 Dec 2017

  • Instituto Escolhas (2016) Quanto Custa Reflorestar 12 Milhões de Hectares? Instituto Escolhas, São Paulo

    Google Scholar 

  • International Union for Conservation of Nature and Natural Resources—IUCN (2016) In: Moraes MA (ed) Forest landscape restoration in Brazil. UICN, Brasília

    Google Scholar 

  • Isbell F, Craven D, Connolly J (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526:574–577

    Google Scholar 

  • Jackson RB, Jobbágy EG, Avissar R (2005) Trading water for carbon with biological carbon sequestration. Science 30:1944–1947

    Google Scholar 

  • Jenkins A, Murray B et al (2010) Valuing ecosystem services from wetlands restoration in the Mississippi Alluvial Valley. Ecol Econ 69:1051–1061

    Google Scholar 

  • Jiang X, Lu D, Moran E, Calvi MF, Dutra LV, Li G (2018) Examining impacts of the Belo Monte hydroelectric dam construction on land-cover changes using multitemporal Landsat imagery. Appl Geogr 97:35–47

    Google Scholar 

  • Kaimowitz D, Smith J (2001) Soybean technology and the loss of natural vegetation in Brazil and Bolivia. In: Angelsen A, Kaimowitz D (eds) Agricultural technologies and tropical deforestation. CABI Publishing, Wallingford, Oxon, pp 195–211

    Google Scholar 

  • Knutti R, Rogelj J, Sedláček J, Fischer EM (2016) A scientific critique of the two-degree climate change target. Nat Geosci 9:13–18

    Google Scholar 

  • Kollmann J, Meyer ST, Bateman R (2016) Integrating ecosystem functions into restoration ecology-recent advances and future directions. Restor Ecol 24(6):722–730

    Google Scholar 

  • Korean Forest Service—KFS (2010) Current status of forests. http://english.forest.go.kr/newkfsweb/html/EngHtmlPage.do?pg=/english/korea/korea_020_010.html&mn=ENG_02_02. Accessed 12 Dec 2017

  • Korean Forest Service—KFS (2013) Korean forests at a glance 2013. http://english.forest.go.kr/newkfsweb/html/EngHtmlPage.do?pg=/esh/koforest/UI_0101_030000.html&mn=ENG_01_03. Accessed 12 Dec 2017

  • Lamb D, Gilmour D (2003) Rehabilitation and restoration of degraded forests. IUCN and WWF, Gland, Cambridge, and Gland

    Google Scholar 

  • Latawiec AE, Strassburg BBN, Brancalion PHS, Rodrigues RR, Gardner T (2015) Creating space for large-scale restoration in tropical agricultural landscapes. Front Ecol Environ 13(4):211–218

    Google Scholar 

  • Leite MGP, Fujaco MAG (2010) A long-term annual water balance analysis of the Aracuai River basin, Brazil. J Geogr Syst 20:938–946

    Google Scholar 

  • Lenschow A (2002) “Greening” the European Union: are there lessons to be learned for international environmental policy? Glob Environ Chang 12:241–245

    Google Scholar 

  • Lestrelin G, Pelletreau A, Valentin C (2007) Local knowledge and land degradation: a participatory case study in the uplands of the Lao PDR. In: Gebbie L, Glendinning A, Lefroy-Braun R, Victor M (eds) Proceedings of the 2nd international conference on sustainable sloping lands and watershed management: linking research to strengthen upland policies and practices, pp 270-286

  • Li Y, Piao S, Li LZ, Chen A et al (2018) Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci Adv 4(5):eaar4182

    Google Scholar 

  • Lindenmayer D, Hobbs RJ, Montague-Drake R et al (2008) A checklist for ecological management of landscapes for conservation. Ecol Lett 11(1):78–91

    Google Scholar 

  • Liu J, Liang M, Li L, Long H, de Jong W (2017) Comparative study of the forest transition pathways of nine Asia-Pacific countries. Forest Policy Econ 76:25–34

    Google Scholar 

  • Loomis J, Kent P, Strange L, Fausch K, Covich A (2000) Measuring the total economic value of restoring ecosystem services in an impaired river basin: results from a contingent valuation survey. Ecol Econ 33:103–117

    Google Scholar 

  • Mansourian S (2016) Understanding the relationship between governance and forest landscape restoration. Conserv Soc 14(3):267–278

    Google Scholar 

  • Maron M, Cockfield G (2008) Managing trade-offs in landscape restoration and revegetation projects. Ecol Appl 18(8):2041–2049

    Google Scholar 

  • Maya ROC (1966) A Floresta da Tijuca. Centro de conservação da Natureza. Ed. Estado da Guanabara, Rio de Janeiro

    Google Scholar 

  • Meli P, Brancalion PHS (2017) Contrasting regulatory frameworks to govern riparian forest restoration in Mexico and Brazil: current status and needs for advances. World Dev Perspect 5:60–62

    Google Scholar 

  • Melo FPL, Pinto SRR, Brancalion PHS, Castro PS, Rodrigues RR, Aronson J, Tabarelli M (2013) Priority setting for scaling-up tropical forest restoration projects: early lessons from the Atlantic Forest Restoration Pact. Environ Sci Pol 33:395–404. https://doi.org/10.1016/j.envsci.2013.07.013

    Article  Google Scholar 

  • Méndez-Toribio M, Martínez-Garza C, Cecconc E, Guariguata MR (2017) Current ecological restoration plans in Latin America: progress and omissions. Ciencias Ambientales 51(2):1–30

    Google Scholar 

  • Ministério do Meio Ambiente—MMA (2011) Pagamentos por Serviços Ambientais na Mata Atlântica: lições aprendidas e desafios. Série Biodiversidade, 42. Guedes FB and Seehusen SE (eds), Brasília

  • Ministério do Meio Ambiente—MMA (2016) Documento-base para subsidiar os diálogos estruturados sobre a elaboração de uma estratégia de implementação e financiamento da Contribuição Nacionalmente Determinada do Brasil ao Acordo de Paris. http://www.mma.gov.br/images/arquivos/clima/ndc/NDCDocBase.pdf. Accessed 12 Dec 2017

  • Ministério do Meio Ambiente—MMA (2017) Plano Nacional de Recuperação da Vegetação Nativa. MMA, Brasília

    Google Scholar 

  • Minnemeyer S, Laestadius L, Sizer N et al (2011) A world of opportunity. World Resources Institute, Washington, DC. http://www.wri.org/sites/default/files/world_of_opportunity_brochure_2011-09.pdf. Accessed 12 Dec 2017

  • Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron DR, Chan KMA, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw MR (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7(1):4–11

    Google Scholar 

  • Nosetto MD, Jobbágy EG, Paruelo JM (2005) Land-use change and water losses: the case of grassland afforestation across a soil textural gradient in central Argentina. Glob Chang Biol 11:1101–1117

    Google Scholar 

  • Noss R (2001) Beyond Kyoto: forest management in a time of rapid climate change. Conserv Biol 15(3):578–590

    Google Scholar 

  • Ostrom E, Cox M (2010) Moving beyond panaceas: a multi-tiered diagnostic approach for social-ecological analysis. Environ Conserv 37:451–463

    Google Scholar 

  • Overbeck GE, Hermann J-M, Andrade BO, Boldrini II, Kiehl K, Kirmer A, Koch C, Kollmann J, Meyer ST, Müller SC, Nabinger C, Pilger GE, Trindade JPP, Vélez-Martin E, Walker EA, Zimmermann DG, Pillar VD (2013) Restoration ecology in Brazil—time to step out of the forest. Nat Conservação 11:92–95

    Google Scholar 

  • Overbeck GE, Vélez-Martin E, Scarano FR et al (2015) Conservation in Brazil needs to include non-forest ecosystems. Divers Distrib 21:1455–1460

    Google Scholar 

  • Pacheco P (2012) Soybean and oil palm expansion in South America: a review of main trends and implications. CIFOR Working Paper 90, CIFOR, Indonesia

  • Palmer MA, Ambrose RF, LeRoy PN (2006) Ecological theory and restoration ecology. In: Falk DA, Palmer MA, Zedler JB (eds) Foundations of restoration ecology. Island Press, Washington, pp 1–10

    Google Scholar 

  • Park MS, Youn YC (2017) Reforestation policy integration by the multiple sectors toward forest transition in the Republic of Korea. Forest Policy Econ 76:45–55

    Google Scholar 

  • Pearson TR, Brown S, Murray L, Sidman G (2017) Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon Balance Manag 12(3):1–11

    Google Scholar 

  • Pinheiro A, Teixeira LP, Kaufmann V (2009) Capacidade de infiltração de água em solos sob diferentes usos e práticas de manejo agrícola. Rev Ambient Água 4:188–199

    Google Scholar 

  • Pitta TP, Mendonça ML (2015) A empresa Radar S/A e a especulação com terras no Brasil. Outras Expressões, São Paulo

    Google Scholar 

  • Pocewicz A, Garcia E (2016) Deforestation facilitates widespread stream habitat and flow alteration in Brazilian Amazon. Biol Conserv 203:252–259

    Google Scholar 

  • Prack K, Marrs R et al (2007) Manipulation of succession. In: Walker LR, Walker J, Hobbs RJ (eds) Linking restoration and ecological succession. Springer, New York, pp 121–149

    Google Scholar 

  • Reed MS, Buenemann M, Atlhopheng J (2011) Cross-scale monitoring and assessment of land degradation and sustainable land management: a methodological framework for knowledge management. Land Degrad Dev 22:261–271

    Google Scholar 

  • Richards RC, Rerolle J, Aronson J, Pereira PH, Gonçalves H, Brancalion PHS (2015) Governing a pioneer program on payment for watershed services: stakeholder involvement, legal frameworks and early lessons from the Atlantic forest of Brazil. Ecosyst Serv 16:23–32

    Google Scholar 

  • Rizek R (2013) Fomentos a projetos de restauração ecológica. In: Políticas Públicas para a Restauração Ecológica e Conservação da Biodiversidade. Instituto de Botânica—SMA, São Paulo

  • Roberts L, Stone R, Sugden A (2009) The rise of ecological restoration. Science 325(5940):555

    Google Scholar 

  • Rochedo PR, Soares-Filho B, Schaeffer R et al (2018) The threat of political bargaining to climate mitigation in Brazil. Nat Clim Chang 8:695–698

    Google Scholar 

  • Rodrigues RR, Lima RAF, Gandolfi S, Nave AG (2009) On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biol Conserv 142:1242–1251

    Google Scholar 

  • Rodrigues RR, Gandolfi S, Nave AG (2011) Large-scale ecological restoration of high-diversity tropical forests in SE Brazil. For Ecol Manag 261:1605–1613

    Google Scholar 

  • Rogelj J, den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, Schaeffer R, Sha F, Riahi K, Meinshausen M (2016) Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534:631–639

    Google Scholar 

  • Sader AS, Joyce AT (1988) Deforestation. Rates and Trends in Costa Rica, 1940 to 1983 Biotropica 20(1):11–19

    Google Scholar 

  • Santana CAA (2002) Estrutura e florística de fragmentos de florestas secundárias de encosta no Município do Rio de Janeiro. Dissertation, Universidade Federal Rural do Rio de Janeiro

  • Scariot A (2013) Land sparing or land sharing: the missing link. Front Ecol Environ 11:177–178

    Google Scholar 

  • Secretaria de Assuntos Estratégicos—SAE (2013) Impacto da revisão do código florestal: como viabilizar o grande desafio adiante? https://www.socioambiental.org/sites/blog.socioambiental.org/files/nsa/arquivos/artigo-codigo-florestal_britaldo_soares_sae_2013pdf.pdf. Accessed 12 Dec 2017

  • Shiferaw BA, Okello J, Reddy RV (2009) Adoption and adaptation of natural resource management innovations in smallholder agriculture: reflections on key lessons and best practices. Environ Dev Sustain 11:601–619

    Google Scholar 

  • Silva JA, Nobre AD, Manzatto CV (2011) O código florestal e a ciência: contribuições para o diálogo. Sociedade Brasileira para o Progresso da. Ciência: Academia Brasileira de Ciência, São Paulo

    Google Scholar 

  • Silva APM, Schweizer D, Marques HR (2017) Can current native tree seedling production and infrastructure meet an increasing forest restoration demand in Brazil? Restor Ecol 25(4):509–515

    Google Scholar 

  • Soares-Filho B, Rajão R, Macedo M (2014) Cracking Brazil’s forest code. Science 344:363–364

    Google Scholar 

  • Society for Ecological Restoration International—SER (2004) Science and policy working group the SER International Primer on ecological restoration. Society for Ecological Restoration International. Tucson, Arizona

    Google Scholar 

  • Sousa PM (2005) Análise do licenciamento ambiental como instrumento de política do meio ambiente no Rio Grande do Norte—Período 1992–2003. Dissertation, Universidade Federal do Rio Grande do Norte

  • Spera SA, Galford GL, Coe MT, Macedo MN, Mustard JF (2016) Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob Chang Biol 22:3405–3413

    Google Scholar 

  • Strassburg BBN, Barros FSM, Crouzeilles R, Iribarrem A, Santos JS, Silva D, Sansevero JBB, Alves-Pinto HN, Feltran-Barbieri R, Latawiec AE (2016) The role of natural regeneration to ecosystem services provision and habitat availability: a case study in the Brazilian Atlantic Forest. Biotropica 48(6):890–899

    Google Scholar 

  • Suding KN (2011) Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annu Rev Ecol Evol Syst 42(42):465–487

    Google Scholar 

  • Suding K, Higgs E, Palmer M, Callicott JB, Anderson CB, Baker M, Gutrich JJ, Hondula KL, LaFevor MC, Larson BMH, Randall A, Ruhl JB, Schwartz KZS (2015) Committing to ecological restoration. Science 348:638–640

    Google Scholar 

  • Suganuma MS, Durigan G (2015) Indicators of restoration success in riparian tropical forests using multiple reference ecosystems. Restor Ecol 23(3):238–251

    Google Scholar 

  • Turner WR, Oppenheimer M, Wilcove DS (2009) A force to fight global warming. Nature 462:278–279

    Google Scholar 

  • United Nations Framework Convention on Climate Change—UNFCCC (1992) Report No. FCCC/INFORMAL/84 https://unfccc.int/resource/docs/convkp/conveng.pdf. Accessed 12 Dec 2017

  • United Nations Framework Convention on Climate Change—UNFCCC (2015) Adoption of the Paris Agreement. Report n° FCCC/CP/2015/L.9/Rev.1 http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf

  • USDA Forest Service (n.d.) https://www.fia.fs.fed.us/slides/Trend-data/Web%20Historic%20Spreadsheets/1630_2000_US_pop_and_forestarea.xls. Accessed 12 Dec 2017

  • Veldman JW, Overbeck GE, Negreiros D, Mahy G, le Stradic S, Fernandes GW, Durigan G, Buisson E, Putz FE, Bond WJ (2015a) Tyranny of trees in grassy biomes. Science 347:484–485

    Google Scholar 

  • Veldman JW, Overbeck GE, Negreiros D, Mahy G, le Stradic S, Fernandes GW, Durigan G, Buisson E, Putz FE, Bond WJ (2015b) Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65(10):1011–1018

    Google Scholar 

  • Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Google Scholar 

  • Wiener JB (2015) Towards an effective system of monitoring, reporting, and verification. In: Barrett S, Carraro C, de Melo J (eds) Towards a workable and effective climate regime. Centre for Economic Policy Research

  • World Resources Institute—WRI (2014) The role of natural regeneration in large-scale forest and landscape restoration: challenge and opportunity building the foundation for a global natural regeneration partnership. In: Org. União Internacional para a Conservação da Natureza—UICN, International Institute for Sustainability—IIS, People and Reforestation in the Tropics—PARTNERS (eds) 56 pp

  • Xu J, Yin R, Li Z, Liu C (2006) China’s ecological rehabilitation: unprecedented efforts, dramatic impacts, and requisite policies. Ecol Econ 57:595–607

    Google Scholar 

  • Xu J, van Noordwijk M, He J, Kim KJ, Jo RS, Pak KG, Kye UH, Kim JS, Kim KM, Sim YN, Pak JU, Song KU, Jong YS, Kim KC, Pang CJ, Ho MH (2012) Participatory agroforestry development for restoring degraded sloping land in DPR Korea. Agrofor Syst 85:291–303

    Google Scholar 

  • Young CEF (2016) Estudos e produção de subsídios técnicos para a construção de uma Política Nacional de Pagamento por Serviços. Final Report. Rio de Janeiro, Instituto de Economia, UFRJ, 93pp

  • Zhenghu D, Honglang X, Xinrong L, Zhibao D, Gang W (2004) Evolution of soil properties on stabilized sands in the Tengger Desert, China. Geomorphology 59:237–246

    Google Scholar 

Download references

Funding

This document is based on discussions held during the Workshop Vegetation Restoration and Mitigation of Climate Change, in Brasilia, Brazil (August 18–19, 2016) financed by the Climate Land Use Alliance. We would like to thank the financial support of the Rede Clima of Brazilian Ministry of Science, Technology and Innovation. José Salomão Silva was supported by the National Council for Scientific and Technological Development (381528/2016-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes M. C. Bustamante.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bustamante, M.M.C., Silva, J.S., Scariot, A. et al. Ecological restoration as a strategy for mitigating and adapting to climate change: lessons and challenges from Brazil. Mitig Adapt Strateg Glob Change 24, 1249–1270 (2019). https://doi.org/10.1007/s11027-018-9837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-018-9837-5

Keywords

Navigation