Skip to main content
Log in

Genetic predisposition and early life experience interact to determine glutamate transporter (GLT1) and solute carrier family 12 member 5 (KCC2) levels in rat hippocampus

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common child psychiatric disorders. While it is typically treated with medications that target dopamine and norepinephrine transmission, there is increasing evidence that other neurotransmitter systems, such as glutamate and GABA, may be involved. The aetiology of ADHD is unknown; however, there is evidence that early life stress may contribute to the development of the disorder. In the present study we used proteomic analysis (iTRAQ) followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot analysis to investigate hippocampal protein profiles of three rat strains: an animal model of ADHD, spontaneously hypertensive rats (SHR), their control Wistar-Kyoto rats (WKY), and Sprague-Dawley rats (SD). We additionally investigated how these protein profiles are affected by maternal separation, a model of early life stress. Our findings show that solute carrier family 12 member 5 (KCC2) is increased in SHR hippocampus. The glutamate transporter GLT1 splice variant, GLT1b, was increased (proteomic analysis) while total GLT1 (comprised mostly of GLT1a splice variant) was reduced (Western blot analysis) in SHR hippocampus, compared to WKY and SD – a pattern that is consistent with elevated extracellular glutamate levels. Maternal separation increased total GLT1 in hippocampi of SHR, WKY, and SD, and reduced GLT1b in SHR hippocampus. Together these findings provide evidence for disturbed glutamatergic and GABAergic transmission in SHR hippocampus, maternal separation effects on glutamate uptake in hippocampi of all three strains, as well a unique effect of maternal separation on GLT1b levels in SHR hippocampus. These data suggest significant involvement of glutamatergic and GABAergic transmission in the neuropathophysiology of ADHD, and implicates changes in glutamatergic transmission as a result of early life stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

P:

postnatal day

SHR:

spontaneously hypertensive rat

WKY:

Wistar-Kyoto rat

SD:

Sprague-Dawley rat

KCC2:

solute carrier family 12 member 5

iTRAQ:

isobaric tag for relative and absolute quantitation

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

MALDI:

matrix-assisted laser desorption/ionization

MS/MS:

tandem mass spectrometry

ADHD:

attention-deficit/hyperactivity disorder

References

  • Aggarwal K, Choe LH, Lee KH (2006) Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomic Proteomic 5:112–120

    Article  PubMed  CAS  Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Publishing, Arlington, VA

    Google Scholar 

  • Arnsten AF (2006) Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiatry 67(Suppl 8):7–12

    PubMed  CAS  Google Scholar 

  • Babenko O, Kovalchuk I, Metz GA (2015) Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci Biobehav Rev 48:70–91

    Article  PubMed  Google Scholar 

  • Bagot RC, van Hasselt FN, Champagne DL, Meaney MJ, Krugers HJ, Joels M (2009) Maternal care determines rapid effects of stress mediators on synaptic plasticity in adult rat hippocampal dentate gyrus. Neurobiol Learn Mem 92:292–300

    Article  PubMed  Google Scholar 

  • Berger UV, DeSilva TM, Chen W, Rosenberg PA (2005) Cellular and subcellular mRNA localization of glutamate transporter isoforms GLT1a and GLT1b in rat brain by in situ hybridization. J Comp Neurol 492:78–89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blaesse P, Airaksinen MS, Rivera C, Kaila K (2009) Cation-chloride cotransporters and neuronal function. Neuron 61:820–838

    Article  PubMed  CAS  Google Scholar 

  • Blaesse P, Guillemin I, Schindler J, Schweizer M, Delpire E, Khiroug L, Friauf E, Nothwang HG (2006) Oligomerization of KCC2 correlates with development of inhibitory neurotransmission. J Neurosci 26:10407–10419

    Article  PubMed  CAS  Google Scholar 

  • Boccia ML, Pedersen CA (2001) Brief vs. long maternal separations in infancy: contrasting relationships with adult maternal behavior and lactation levels of aggression and anxiety. Psychoneuroendocrinology 26:657–672

    Article  PubMed  CAS  Google Scholar 

  • Bredy TW, Zhang TY, Grant RJ, Diorio J, Meaney MJ (2004) Peripubertal environmental enrichment reverses the effects of maternal care on hippocampal development and glutamate receptor subunit expression. Eur J Neurosci 20:1355–1362

    Article  PubMed  Google Scholar 

  • Caldji C, Tannenbaum B, Sharma S, Francis D, Plotsky PM, Meaney MJ (1998) Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc Natl Acad Sci U S A 95:5335–5340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carrey NJ, MacMaster FP, Gaudet L, Schmidt MH (2007) Striatal creatine and glutamate/glutamine in attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 17:11–17

    Article  PubMed  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    Article  PubMed  CAS  Google Scholar 

  • Courvoisie H, Hooper SR, Fine C, Kwock L, Castillo M (2004) Neurometabolic functioning and neuropsychological correlates in children with ADHD-H: preliminary findings. J Neuropsychiatry Clin Neurosci 16:63–69

    Article  PubMed  CAS  Google Scholar 

  • Danbolt N, Storm-Mathisen J, Kanner B (1992) An [Na+ + K+] coupled L-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience 51:295–310

    Article  PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  • Dimatelis JJ, Hsieh JH, Sterley T-L, Marais L, Womersley JS, Vlok M, Russell VA (2015) Impaired energy metabolism and disturbed dopamine and glutamate signalling in the striatum and prefrontal cortex of the spontaneously hypertensive rat model of attention-deficit hyperactivity disorder. J Mol Neurosci 1-12

  • Doherty P, Fazeli MS, Walsh FS (1995) The neural cell adhesion molecule and synaptic plasticity. J Neurobiol 26:437–446

    Article  PubMed  CAS  Google Scholar 

  • Duman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338:68–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eng L, Ghirnikar R, Lee Y (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25:1439–1451

    Article  PubMed  CAS  Google Scholar 

  • Fabricius K, Wörtwein G, Pakkenberg B (2008) The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus. Brain Struct Funct 212:403–416

    Article  PubMed  PubMed Central  Google Scholar 

  • Faraone SV, Doyle AE (2000) Genetic influences on attention deficit hyperactivity disorder. Curr Psychiatry Rep 2:143–146

    Article  PubMed  CAS  Google Scholar 

  • Faraone SV, Mick E (2010) Molecular genetics of attention deficit hyperactivity disorder. Psychiatr Clin North Am 33:159–180

    Article  PubMed  PubMed Central  Google Scholar 

  • Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Faraone SV, Sergeant J, Gillberg C, Biederman J (2003) The worldwide prevalence of ADHD: is it an American condition? World Psychiatry 2:104–113

    PubMed  PubMed Central  Google Scholar 

  • Ganguly K, Schinder AF, Wong ST, M-m P (2001) GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell 105:521–532

    Article  PubMed  CAS  Google Scholar 

  • Glover V (2015) Prenatal stress and its effects on the fetus and the child: possible underlying biological mechanisms. Adv Neurobiol 10:269–283

    Article  PubMed  Google Scholar 

  • Haugeto Ø, Ullensvang K, Levy LM, Chaudhry FA, Honoré T, Nielsen M, Lehre KP, Danbolt NC (1996) Brain glutamate transporter proteins form homomultimers. J Biol Chem 271:27715–27722

    Article  PubMed  CAS  Google Scholar 

  • Hayes DJ, Jupp B, Sawiak SJ, Merlo E, Caprioli D, Dalley JW (2014) Brain gamma-aminobutyric acid: a neglected role in impulsivity. Eur J Neurosci 39:1921–1932

    Article  PubMed  Google Scholar 

  • Helms JB, Zurzolo C (2004) Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 5:247–254

    Article  PubMed  CAS  Google Scholar 

  • Heo S, Jung G, Beuk T, Hoger H, Lubec G (2012) Hippocampal glutamate transporter 1 (GLT-1) complex levels are paralleling memory training in the multiple T-maze in C57BL/6 J mice. Brain Struct Funct 217:363–378

    Article  PubMed  CAS  Google Scholar 

  • Hewitt SA, Wamsteeker JI, Kurz EU, Bains JS (2009) Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nat Neurosci 12:438–443

    Article  PubMed  CAS  Google Scholar 

  • Hofer MA, Brunelli SA, Shair HN (1994) Potentiation of isolation-induced vocalization by brief exposure of rat pups to maternal cues. Dev Psychobiol 27:503–517

    Article  PubMed  CAS  Google Scholar 

  • Holmseth S, Scott HA, Real K, Lehre KP, Leergaard TB, Bjaalie JG, Danbolt NC (2009) The concentrations and distributions of three C-terminal variants of the GLT1 (EAAT2; slc1a2) glutamate transporter protein in rat brain tissue suggest differential regulation. Neuroscience 162:1055–1071

    Article  PubMed  CAS  Google Scholar 

  • Howells FM, Bindewald L, Russell VA (2009) Cross-fostering does not alter the neurochemistry or behavior of spontaneously hypertensive rats. Behav Brain Funct 5:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howells FM, Russell VA (2008) Glutamate-stimulated release of norepinephrine in hippocampal slices of animal models of attention-deficit/hyperactivity disorder (spontaneously hypertensive rat) and depression/anxiety-like behaviours (wistar-Kyoto rat). Brain Res 1200:107–115

    Article  PubMed  CAS  Google Scholar 

  • Huot RL, Plotsky PM, Lenox RH, McNamara RK (2002) Neonatal maternal separation reduces hippocampal mossy fiber density in adult long Evans rats. Brain Res 950:52–63

    Article  PubMed  CAS  Google Scholar 

  • Huot RL, Thrivikraman KV, Meaney MJ, Plotsky PM (2001) Development of adult ethanol preference and anxiety as a consequence of neonatal maternal separation in long Evans rats and reversal with antidepressant treatment. Psychopharmacology 158:366–373

    Article  PubMed  CAS  Google Scholar 

  • Janeczko K (1993) Co-expression of GFAP and vimentin in astrocytes proliferating in response to injury in the mouse cerebral hemisphere A combined autoradiographic and double immunocytochemical study. Int J Dev Neurosci 11:139–147

    Article  PubMed  CAS  Google Scholar 

  • Jenson D, Yang K, Acevedo-Rodriguez A, Levine A, Broussard JI, Tang J, Dani JA (2015) Dopamine and norepinephrine receptors participate in methylphenidate enhancement of in vivo hippocampal synaptic plasticity. Neuropharmacology 90:23–32

    Article  PubMed  CAS  Google Scholar 

  • Jones MD, Hess EJ (2003) Norepinephrine regulates locomotor hyperactivity in the mouse mutant coloboma. Pharmacol Biochem Behav 75:209–216

    Article  PubMed  CAS  Google Scholar 

  • Ladd CO, Huot RL, Thrivikraman KV, Nemeroff CB, Meaney MJ, Plotsky PM (2000) Long-term behavioral and neuroendocrine adaptations to adverse early experience. Prog Brain Res 122:81–103

    Article  PubMed  CAS  Google Scholar 

  • Ladd CO, Huot RL, Thrivikraman KV, Nemeroff CB, Plotsky PM (2004) Long-term adaptations in glucocorticoid receptor and mineralocorticoid receptor mRNA and negative feedback on the hypothalamo-pituitary-adrenal axis following neonatal maternal separation. Biol Psychiatry 55:367–375

    Article  PubMed  CAS  Google Scholar 

  • Lasky-Su J, Neale BM, Franke B, Anney RJ, Zhou K, Maller JB, Vasquez AA, Chen W, Asherson P, Buitelaar J, Banaschewski T, Ebstein R, Gill M, Miranda A, Mulas F, Oades RD, Roeyers H, Rothenberger A, Sergeant J, Sonuga-Barke E, Steinhausen HC, Taylor E, Daly M, Laird N, Lange C, Faraone SV (2008) Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet B Neuropsychiatr Genet 147B:1345–1354

    Article  PubMed  CAS  Google Scholar 

  • Lehmann J, Pryce CR, Bettschen D, Feldon J (1999) The maternal separation paradigm and adult emotionality and cognition in male and female wistar rats. Pharmacol Biochem Behav 64:705–715

    Article  PubMed  CAS  Google Scholar 

  • Lehohla M, Kellaway L, Russell VA (2004) NMDA receptor function in the prefrontal cortex of a rat model for attention-deficit hyperactivity disorder. Metab Brain Dis 19:35–42

    Article  PubMed  CAS  Google Scholar 

  • Lippmann M, Bress A, Nemeroff CB, Plotsky PM, Monteggia LM (2007) Long-term behavioural and molecular alterations associated with maternal separation in rats. Eur J Neurosci 25:3091–3098

    Article  PubMed  Google Scholar 

  • Liso Navarro AA, Sikoglu EM, Heinze CR, Rogan RC, Russell VA, King JA, Moore CM (2014) Effect of dietf Cation-chloride cotransporters and neuronal on brain metabolites and behavior in spontaneously hypertensive rats. Behav Brain Res 270:240–247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, Sharma S, Pearson D, Plotsky PM, Meaney MJ (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–1662

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Karadsheh M, Delpire E (1999) Developmental regulation of the neuronal-specific isoform of K-Cl cotransporter KCC2 in postnatal rat brains. J Neurobiol 39:558–568

    Article  PubMed  CAS  Google Scholar 

  • Luna EJ, Hitt AL (1992) Cytoskeleton–plasma membrane interactions. Science 258:955–964

    Article  PubMed  CAS  Google Scholar 

  • MacMaster FP, Carrey N, Sparkes S, Kusumakar V (2003) Proton spectroscopy in medication-free pediatric attention-deficit/hyperactivity disorder. Biol Psychiatry 53:184–187

    Article  PubMed  Google Scholar 

  • Mahadevan V, Pressey JC, Acton BA, Uvarov P, Huang MY, Chevrier J, Puchalski A, Li CM, Ivakine EA, Airaksinen MS (2014) Kainate receptors coexist in a functional complex with KCC2 and regulate chloride homeostasis in hippocampal neurons. Cell Rep 7:1762–1770

    Article  PubMed  CAS  Google Scholar 

  • Maragakis NJ, Dykes-Hoberg M, Rothstein JD (2004) Altered expression of the glutamate transporter EAAT2b in neurological disease. Ann Neurol 55:469–477

    Article  PubMed  CAS  Google Scholar 

  • Martin B, Brenneman R, Becker KG, Gucek M, Cole RN, Maudsley S (2008) ITRAQ analysis of complex proteome alterations in 3xTgAD Alzheimer's mice: understanding the interface between physiology and disease. PLoS One 3:e2750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martisova E, Solas M, Horrillo I, Ortega JE, Meana JJ, Tordera RM, Ramirez MJ (2012) Long lasting effects of early-life stress on glutamatergic/GABAergic circuitry in the rat hippocampus. Neuropharmacology 62:1944–1953

    Article  PubMed  CAS  Google Scholar 

  • Mc Fie S, Sterley TL, Howells FM, Russell VA (2012) Clozapine decreases exploratory activity and increases anxiety-like behaviour in the wistar-Kyoto rat but not the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Brain Res 1467:91–103

    Article  PubMed  CAS  Google Scholar 

  • McDonald W, Yates 3rd J (2003) Shotgun proteomics: integrating technologies to answer biological questions. Curr Opin Mol Ther 5:302

    PubMed  CAS  Google Scholar 

  • Meaney MJ (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 24:1161–1192

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Münch C, Knappenberger B, Liebau S, Völkel H, Ludolph A (1998) Alternative splicing of the glutamate transporter EAAT2 (GLT-1). Neurosci Lett 241:68–70

    Article  PubMed  CAS  Google Scholar 

  • Miller EM, Pomerleau F, Huettl P, Gerhardt GA, Glaser PE (2014) Aberrant glutamate signaling in the prefrontal cortex and striatum of the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Psychopharmacology 231:3019–3029

    Article  PubMed  CAS  Google Scholar 

  • Mirescu C, Peters JD, Gould E (2004) Early life experience alters response of adult neurogenesis to stress. Nat Neurosci 7:841–846

    Article  PubMed  CAS  Google Scholar 

  • Muller DJ, Mandelli L, Serretti A, DeYoung CG, De Luca V, Sicard T, Tharmalingam S, Gallinat J, Muglia P, De Ronchi D, Jain U, Kennedy JL (2008) Serotonin transporter gene and adverse life events in adult ADHD. Am J Med Genet B Neuropsychiatr Genet 147B:1461–1469

    Article  PubMed  CAS  Google Scholar 

  • Pearse B (1976) Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci 73:1255–1259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perego C, Vanoni C, Bossi M, Massari S, Basudev H, Longhi R, Pietrini G (2000) The GLT-1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures. J Neurochem 75:1076–1084

    Article  PubMed  CAS  Google Scholar 

  • Pierce A, Unwin RD, Evans CA, Griffiths S, Carney L, Zhang L, Jaworska E, Lee C-F, Blinco D, Okoniewski MJ (2008) Eight-channel iTRAQ enables comparison of the activity of six leukemogenic tyrosine kinases. Mol Cell Proteomics 7:853–863

    Article  PubMed  CAS  Google Scholar 

  • Plotkin M, Snyder E, Hebert S, Delpire E (1997) Expression of the Na-K-2Cl cotransporter is developmentally regulated in postnatal rat brains: a possible mechanism underlying GABA's excitatory role in immature brain. J Neurobiol 33:781–795

    Article  PubMed  CAS  Google Scholar 

  • Plotsky PM, Meaney MJ (1993) Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res Mol Brain Res 18:195–200

    Article  PubMed  CAS  Google Scholar 

  • Plotsky PM, Thrivikraman KV, Nemeroff CB, Caldji C, Sharma S, Meaney MJ (2005) Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring. Neuropsychopharmacology 30:2192–2204

    Article  PubMed  CAS  Google Scholar 

  • Pow DV, Naidoo T, Lingwood BE, Healy GN, Williams SM, Sullivan RK, O'Driscoll S, Colditz PB (2004) Loss of glial glutamate transporters and induction of neuronal expression of GLT-1B in the hypoxic neonatal pig brain. Brain Res Dev Brain Res 153:1–11

    Article  PubMed  CAS  Google Scholar 

  • Pryce CR, Bettschen D, Feldon J (2001) Comparison of the effects of early handling and early deprivation on maternal care in the rat. Dev Psychobiol 38:239–251

    Article  PubMed  CAS  Google Scholar 

  • Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    Article  PubMed  CAS  Google Scholar 

  • Rønn LCB, Berezin V, Bock E (2000) The neural cell adhesion molecule in synaptic plasticity and ageing. Int J Dev Neurosci 18:193–199

    Article  PubMed  Google Scholar 

  • Rosenfeld P, Wetmore JB, Levine S (1992) Effects of repeated maternal separations on the adrenocortical response to stress of preweanling rats. Physiol Behav 52:787–791

    Article  PubMed  CAS  Google Scholar 

  • Russell V (2001a) Increased AMPA receptor function in slices containing the prefrontal cortex of spontaneously hypertensive rats. Metab Brain Dis 16:143–149

    Article  PubMed  CAS  Google Scholar 

  • Russell VA (2001b) Increased AMPA receptor function in slices containing the prefrontal cortex of spontaneously hypertensive rats. Metab Brain Dis 16:143–149

    Article  PubMed  CAS  Google Scholar 

  • Russell VA, Oades RD, Tannock R, Killeen PR, Auerbach JG, Johansen EB, Sagvolden T (2006) Response variability in attention-deficit/hyperactivity disorder: a neuronal and glial energetics hypothesis. Behav Brain Funct 2:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Russell VA, Wiggins TM (2000) Increased glutamate-stimulated norepinephrine release from prefrontal cortex slices of spontaneously hypertensive rats. Metab Brain Dis 15:297–304

    Article  PubMed  CAS  Google Scholar 

  • Skounti M, Philalithis A, Galanakis E (2007) Variations in prevalence of attention deficit hyperactivity disorder worldwide. Eur J Pediatr 166:117–123

    Article  PubMed  Google Scholar 

  • Spencer AE, Uchida M, Kenworthy T, Keary CJ, Biederman J (2014) Glutamatergic dysregulation in pediatric psychiatric disorders: a systematic review of the magnetic resonance spectroscopy literature. J Clin Psychiatry 75:1226–1241

    Article  PubMed  Google Scholar 

  • Spencer RC, Devilbiss DM, Berridge CW (2015) The cognition-enhancing effects of psychostimulants involve direct action in the prefrontal cortex. Biol Psychiatry 77:940–950

    Article  PubMed  CAS  Google Scholar 

  • StatSoft I (2013) STATISTICA (data analysis software system), version 12. www.statsoft.com.

  • Sterley TL, Howells FM, Russell VA (2011) Effects of early life trauma are dependent on genetic predisposition: a rat study. Behav Brain Funct 7:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Sterley TL, Howells FM, Russell VA (2013a) Evidence for reduced tonic levels of GABA in the hippocampus of an animal model of ADHD, the spontaneously hypertensive rat. Brain Res 1541:52–60

    Article  PubMed  CAS  Google Scholar 

  • Sterley TL, Howells FM, Russell VA (2013b) Maternal separation increases GABA(a) receptor-mediated modulation of norepinephrine release in the hippocampus of a rat model of ADHD, the spontaneously hypertensive rat. Brain Res 1497:23–31

    Article  PubMed  CAS  Google Scholar 

  • Stevens SE, Kumsta R, Kreppner JM, Brookes KJ, Rutter M, Sonuga-Barke EJ (2009) Dopamine transporter gene polymorphism moderates the effects of severe deprivation on ADHD symptoms: developmental continuities in gene-environment interplay. Am J Med Genet B Neuropsychiatr Genet 150B:753–761

    Article  PubMed  CAS  Google Scholar 

  • Sun D, Murali SG (1999) Na+-K+-2Cl cotransporter in immature cortical neurons: a role in intracellular Cl regulation. J Neurophysiol 81:1939–1948

    PubMed  CAS  Google Scholar 

  • Tulumello DV, Deber CM (2009) SDS micelles as a membrane-mimetic environment for transmembrane segments. Biochemistry 48:12096–12103

    Article  PubMed  CAS  Google Scholar 

  • Utsunomiya-Tate N, Endou H, Kanai Y (1997) Tissue specific variants of glutamate transporter GLT-1. FEBS Lett 416:312–316

    Article  PubMed  CAS  Google Scholar 

  • van Heerden JH, Conesa A, Stein DJ, Montaner D, Russell V, Illing N (2009) Parallel changes in gene expression in peripheral blood mononuclear cells and the brain after maternal separation in the mouse. BMC Res Not 2:195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wigger A, Neumann ID (1999) Periodic maternal deprivation induces gender-dependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. Physiol Behav 66:293–302

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MR, Sanchez J-C, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    Article  PubMed  CAS  Google Scholar 

  • Williams JR, Sharp JW, Kumari VG, Wilson M, Payne JA (1999) The neuron-specific K-Cl cotransporter, KCC2 antibody development and initial characterization of the protein. J Biol Chem 274:12656–12664

    Article  PubMed  CAS  Google Scholar 

  • Womersley JS, Hsieh JH, Kellaway LA, Gerhardt GA, Russell VA (2011) Maternal separation affects dopamine transporter function in the spontaneously hypertensive rat: an in vivo electrochemical study. Behav Brain Funct 7:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamada J, Okabe A, Toyoda H, Kilb W, Luhmann HJ, Fukuda A (2004) Cl uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. J Physiol 557:829–841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang LX, Levine S, Dent G, Zhan Y, Xing G, Okimoto D, Kathleen Gordon M, Post RM, Smith MA (2002) Maternal deprivation increases cell death in the infant rat brain. Brain Res Dev Brain Res 133:1–11

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Polley N, Mathews GC, Delpire E (2008) NKCC1 and KCC2 prevent hyperexcitability in the mouse hippocampus. Epilepsy Res 79:201–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziabreva I, Schnabel R, Poeggel G, Braun K (2003) Mother's voice "buffers" separation-induced receptor changes in the prefrontal cortex of Octodon degus. Neuroscience 119:433–441

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Faculty of Health Sciences Research Committee (FRC) of the University of Cape Town for the Postgraduate Publication Incentive Award, as well as the University of Cape Town and the National Research Foundation (NRF) for their continued support. We also thank Dr. Mare Vlok of the Centre for Proteomic and Genomic Research (CPGR) for performing the proteomic analysis of the samples in the present study. Thank you also to Nuraan Ismail and Abdul Karriem Samuels who cared for the animals. Any opinion, finding and conclusion or recommendation expressed in this material is that of the authors and the NRF does not accept any liability in this regard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni-Lee Sterley.

Ethics declarations

The research involved the use of animals. All applicable international, national and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the University of Cape Town.

Funding

This study was funded by the National Research Foundation (NRF).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterley, TL., Howells, F.M., Dimatelis, J.J. et al. Genetic predisposition and early life experience interact to determine glutamate transporter (GLT1) and solute carrier family 12 member 5 (KCC2) levels in rat hippocampus. Metab Brain Dis 31, 169–182 (2016). https://doi.org/10.1007/s11011-015-9742-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-015-9742-5

Keywords

Navigation