Skip to main content
Log in

Functional and structural consequences of chemokine (C-X-C motif) receptor 4 activation with cognate and non-cognate agonists

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Chemokine (C-X-C motif) receptor 4 (CXCR4) regulates cell trafficking and plays important roles in the immune system. Ubiquitin has recently been identified as an endogenous non-cognate agonist of CXCR4, which activates CXCR4 via interaction sites that are distinct from those of the cognate agonist C-X-C motif chemokine ligand 12 (CXCL12). As compared with CXCL12, chemotactic activities of ubiquitin in primary human cells are poorly characterized. Furthermore, evidence for functional selectivity of CXCR4 agonists is lacking, and structural consequences of ubiquitin binding to CXCR4 are unknown. Here, we show that ubiquitin and CXCL12 have comparable chemotactic activities in normal human peripheral blood mononuclear cells, monocytes, vascular smooth muscle, and endothelial cells. Chemotactic activities of the CXCR4 ligands could be inhibited with the selective CXCR4 antagonist AMD3100 and with a peptide analogue of the second transmembrane domain of CXCR4. In human monocytes, ubiquitin- and CXCL12-induced chemotaxis could be inhibited with pertussis toxin and with inhibitors of phospholipase C, phosphatidylinositol 3 kinase, and extracellular signal-regulated kinase 1/2. Both agonists induced inositol trisphosphate production in vascular smooth muscle cells, which could be inhibited with AMD3100. In β-arrestin recruitment assays, ubiquitin did not sufficiently recruit β-arrestin2 to CXCR4 (EC50 > 10 μM), whereas the EC50 for CXCL12 was 4.6 nM (95% confidence interval 3.1–6.1 nM). Both agonists induced similar chemical shift changes in the 13C-1H-heteronuclear single quantum correlation (HSQC) spectrum of CXCR4 in membranes, whereas CXCL11 did not significantly alter the 13C-1H-HSQC spectrum of CXCR4. Our findings point towards ubiquitin as a biased agonist of CXCR4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AE, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A (2014) International Union of Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 66:1–79

    Article  PubMed  PubMed Central  Google Scholar 

  2. Busillo JM, Benovic JL (2007) Regulation of CXCR4 signaling. Biochim Biophys Acta 1768:952–963

    Article  CAS  PubMed  Google Scholar 

  3. Marchese A, Trejo J (2013) Ubiquitin-dependent regulation of G protein-coupled receptor trafficking and signaling. Cell Signal 25:707–716

    Article  CAS  PubMed  Google Scholar 

  4. Saini V, Marchese A, Majetschak M (2010) CXC chemokine receptor 4 is a cell surface receptor for extracellular ubiquitin. J Biol Chem 285:15566–15576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saini V, Staren DM, Ziarek JJ, Nashaat ZN, Campbell EM, Volkman BF, Marchese A, Majetschak M (2011) The CXC chemokine receptor 4 ligands ubiquitin and stromal cell-derived factor-1alpha function through distinct receptor interactions. J Biol Chem 286:33466–33477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tripathi A, Saini V, Marchese A, Volkman BF, Tang WJ, Majetschak M (2013) Modulation of the CXC chemokine receptor 4 agonist activity of ubiquitin through C-terminal protein modification. Biochemistry 52:4184–4192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yan L, Cai Q, Xu Y (2013) The Ubiquitin-CXCR4 axis plays an important role in acute lung infection-enhanced lung tumor metastasis. Clin Cancer Res 19:4706–4716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cai D, Lee KK, Li M, Tang MK, Chan KM (2004) Ubiquitin expression is up-regulated in human and rat skeletal muscles during aging. Arch Biochem Biophys 425:42–50

    Article  CAS  PubMed  Google Scholar 

  9. Steagall RJ, Daniels CR, Dalal S, Joyner WL, Singh M, Singh K (2014) Extracellular ubiquitin increases expression of angiogenic molecules and stimulates angiogenesis in cardiac microvascular endothelial cells. Microcirculation 21:324–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tripathi A, Davis JD, Staren DM, Volkman BF, Majetschak M (2014) CXC chemokine receptor 4 signaling upon co-activation with stromal cell-derived factor-1alpha and ubiquitin. Cytokine 65:121–125

    Article  CAS  PubMed  Google Scholar 

  11. Tan C, Lu X, Chen W, Chen S (2014) Serum ubiquitin via CXC chemokine receptor 4 triggered cyclooxygenase-1 ubiquitination possibly involved in the pathogenesis of aspirin resistance. Clin Hemorheol Microcirc 61:59–81

    Article  Google Scholar 

  12. Muppidi A, Doi K, Edwardraja S, Pulavarti SV, Szyperski T, Wang HG, Lin Q (2014) Targeted delivery of ubiquitin-conjugated BH3 peptide-based Mcl-1 inhibitors into cancer cells. Bioconjug Chem 25:424–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao Y, Li C, Zhang Q, Wang Y, Xia R (2014) Extracellular ubiquitin enhances the suppressive effects of regulatory T cells on effector T cell responses. Clin Lab 60:1983–1991

    CAS  PubMed  Google Scholar 

  14. Nguyen T, Ho M, Ghosh A, Kim T, Yun SI, Lee SS, Kim KK (2016) An ubiquitin-binding molecule can work as an inhibitor of ubiquitin processing enzymes and ubiquitin receptors. Biochem Biophys Res Commun 479:33–39

    Article  CAS  PubMed  Google Scholar 

  15. Evans AE, Tripathi A, Laporte HM, Brueggemann LI, Singh AK, Albee LJ, Byron KL, Tarasova NI, Volkman BF, Cho TY, Gaponenko V, Majetschak M (2016) New insights into mechanisms and functions of chemokine (C-X-C motif) receptor 4 heteromerization in vascular smooth muscle. Int J Mol Sci 17:E971

    Article  PubMed  Google Scholar 

  16. Kroeze WK, Sassano MF, Huang XP, Lansu K, McCorvy JD, Giguere PM, Sciaky N, Roth BL (2015) PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat Struct Mol Biol 22:362–369

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Abraham SJ, Kobayashi T, Solaro RJ, Gaponenko V (2009) Differences in lysine pKa values may be used to improve NMR signal dispersion in reductively methylated proteins. J Biomol NMR 43:239–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tripathi A, Vana PG, Chavan TS, Brueggemann LI, Byron KL, Tarasova NI, Volkman BF, Gaponenko V, Majetschak M (2015) Heteromerization of chemokine (C-X-C motif) receptor 4 with alpha1A/B-adrenergic receptors controls alpha1-adrenergic receptor function. Proc Natl Acad Sci USA 112:E1659–E1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

  20. Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16

    Article  CAS  PubMed  Google Scholar 

  21. Pellecchia M, Montgomery DL, Stevens SY, Vander Kooi CW, Feng HP, Gierasch LM, Zuiderweg ER (2000) Structural insights into substrate binding by the molecular chaperone DnaK. Nat Struct Biol 7:298–303

    Article  CAS  PubMed  Google Scholar 

  22. Farmer BT 2nd, Constantine KL, Goldfarb V, Friedrichs MS, Wittekind M, Yanchunas J Jr, Robertson JG, Mueller L (1996) Localizing the NADP+ binding site on the MurB enzyme by NMR. Nat Struct Biol 3:957–995

    Article  Google Scholar 

  23. Gulino AV, Moratto D, Sozzani S, Cavadini P, Otero K, Tassone L, Imberti L, Pirovano S, Notarangelo LD, Soresina R, Mazzolari E, Nelson DL, Notarangelo LD, Badolato R (2004) Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood 104:444–452

    Article  CAS  PubMed  Google Scholar 

  24. Gouwy M, Struyf S, Berghmans N, Vanormelingen C, Schols D, Van Damme J (2011) CXCR4 and CCR5 ligands cooperate in monocyte and lymphocyte migration and in inhibition of dual-tropic (R5/X4) HIV-1 infection. Eur J Immunol 41:963–973

    Article  CAS  PubMed  Google Scholar 

  25. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA (1996) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184:1101–1109

    Article  CAS  PubMed  Google Scholar 

  26. Tarasova NI, Rice WG, Michejda CJ (1999) Inhibition of G-protein-coupled receptor function by disruption of transmembrane domain interactions. J Biol Chem 274:34911–34915

    Article  CAS  PubMed  Google Scholar 

  27. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun Y, Cheng Z, Ma L, Pei G (2002) Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem 277:49212–49219

    Article  CAS  PubMed  Google Scholar 

  29. Clift IC, Bamidele AO, Rodriguez-Ramirez C, Kremer KN, Hedin KE (2014) Beta-arrestin1 and distinct CXCR4 structures are required for stromal derived factor-1 to downregulate CXCR4 cell-surface levels in neuroblastoma. Mol Pharmacol 85:542–552

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alekhina O, Marchese A (2016) beta-arrestin1 and signal-transducing adaptor molecule 1 (STAM1) cooperate to promote focal adhesion kinase autophosphorylation and chemotaxis via the chemokine receptor CXCR4. J Biol Chem 291:26083–26097

    Article  CAS  PubMed  Google Scholar 

  31. Ahn S, Shenoy SK, Wei H, Lefkowitz RJ (2004) Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 279:35518–35525

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Institute of General Medical Sciences (Awards R01GM107495); by the National Cancer Institute (Award R01CA188427); by the National Heart, Lung, and Blood Institute (Award R21HL118588); and by the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program under Award No. W81XWH-15-1-0262. The content is solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Majetschak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eby, J.M., Abdelkarim, H., Albee, L.J. et al. Functional and structural consequences of chemokine (C-X-C motif) receptor 4 activation with cognate and non-cognate agonists. Mol Cell Biochem 434, 143–151 (2017). https://doi.org/10.1007/s11010-017-3044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3044-7

Keywords

Navigation