Skip to main content
Log in

Decreased expression of microRNA-21 is associated with increased cytokine production in peripheral blood mononuclear cells (PBMCs) of obese type 2 diabetic and non-diabetic subjects

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the role of miR-21 in inflammatory responses in peripheral blood mononuclear cells (PBMCs) of type 2 diabetic (T2D) and healthy subjects. 20 healthy and 20 T2D subjects were enrolled in the study. miR-21 expression in PBMCs of the subjects was measured using real-time PCR. IL-6 and TNF-α levels in culture supernatants were quantified using ELISA. miR-21 expression was not significantly different between the diabetic and nondiabetic groups. A downregulation of miR-21 expression was observed in PBMCs of obese subjects in both diabetic and nondiabetic groups. In addition, miR-21 expression was negatively correlated with weight, waist circumference, body mass index, and triglyceride in both the diabetic and nondiabetic groups. Our results also demonstrated that the PBMCs of obese subjects significantly secreted a higher level of IL-6 and TNF-α in comparison with the PBMCs of nonobese subjects. Furthermore, a significant inverse correlation between miR-21 expression and TNF-α and IL-6 production from the PBMCs was observed. These data suggest that miR-21 expression is decreased in PBMCs of obese subjects and reduced expression appears to be associated with increased secreted cytokine level in media of PBMCs of obese subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

FBS:

Fasting blood sugar

IL-6:

Interleukin 6

IL-1β:

Interleukin 1β

IL-10:

Interleukin 10

IL-4:

Interleukin 4

IL-13:

Interleukin 13

LPS:

Lipopolysaccharide

miR-21:

MicroRNA-21

NF-κB:

Nuclear factor kappa B

PBMCs:

Peripheral blood mononuclear cells

TNF-α:

Tumor necrosis factor alpha

TLR-4:

Toll-like receptor-4

T2D:

Type 2 diabetes

WC:

Waist circumference

References

  1. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14. doi:10.1016/j.diabres.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  2. Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R (2016) Molecular and cellular mechanisms linking inflammation to insulin resistance and beta-cell dysfunction. Transl Res 167:228–256. doi:10.1016/j.trsl.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  3. Meshkani R, Adeli K (2009) Mechanisms linking the metabolic syndrome and cardiovascular disease: role of hepatic insulin resistance. J Tehran Univ Heart Cent 4:77–84

    CAS  Google Scholar 

  4. Saberi H, Mohammadtaghvaei N, Gulkho S, Bakhtiyari S, Mohammadi M, Hanachi P, Gerayesh-Nejad S, Zargari M, Ataei F, Parvaneh L, Larijani B, Meshkani R (2011) The ENPP1 K121Q polymorphism is not associated with type 2 diabetes and related metabolic traits in an Iranian population. Mol Cell Biochem 350:113–118. doi:10.1007/s11010-010-0687-z

    Article  CAS  PubMed  Google Scholar 

  5. Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246. doi:10.1146/annurev-physiol-021909-135846

    Article  CAS  PubMed  Google Scholar 

  6. Hulsmans M, De Keyzer D, Holvoet P (2011) MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB J 25:2515–2527. doi:10.1096/fj.11-181149

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Russell I, Chen C (2009) MicroRNA and stem cell regulation. Curr Opin Mol Ther 11:292–298

    PubMed  Google Scholar 

  8. Zhou X, Wang X, Huang Z, Wang J, Zhu W, Shu Y, Liu P (2014) Prognostic value of miR-21 in various cancers: an updating meta-analysis. PLoS One 9:e102413. doi:10.1371/journal.pone.0102413

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cheng Y, Zhang C (2010) MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res 3:251–255. doi:10.1007/s12265-010-9169-7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Selcuklu SD, Donoghue MT, Spillane C (2009) miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans 37:918–925. doi:10.1042/BST0370918

    Article  CAS  PubMed  Google Scholar 

  11. Keller P, Gburcik V, Petrovic N, Gallagher IJ, Nedergaard J, Cannon B, Timmons JA (2011) Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity. BMC Endocr Disord 11:7. doi:10.1186/1472-6823-11-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li S, Chen X, Zhang H, Liang X, Xiang Y, Yu C, Zen K, Li Y, Zhang CY (2009) Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res 50:1756–1765. doi:10.1194/jlr.M800509-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mazloom H, Alizadeh S, Pasalar P, Esfahani EN, Meshkani R (2015) Downregulated microRNA-155 expression in peripheral blood mononuclear cells of type 2 diabetic patients is not correlated with increased inflammatory cytokine production. Cytokine 76:403–408. doi:10.1016/j.cyto.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  14. Dong L, Wang X, Tan J, Li H, Qian W, Chen J, Chen Q, Wang J, Xu W, Tao C, Wang S (2014) Decreased expression of microRNA-21 correlates with the imbalance of Th17 and Treg cells in patients with rheumatoid arthritis. J Cell Mol Med 18:2213–2224. doi:10.1111/jcmm.12353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu TX, Sherrill JD, Wen T, Plassard AJ, Besse JA, Abonia JP, Franciosi JP, Putnam PE, Eby M, Martin LJ, Aronow BJ, Rothenberg ME (2012) MicroRNA signature in patients with eosinophilic esophagitis, reversibility with glucocorticoids, and assessment as disease biomarkers. J Allergy Clin Immunol 129(1064–75):e9. doi:10.1016/j.jaci.2012.01.060

    PubMed  Google Scholar 

  16. Lu TX, Hartner J, Lim EJ, Fabry V, Mingler MK, Cole ET, Orkin SH, Aronow BJ, Rothenberg ME (2011) MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol 187:3362–3373. doi:10.4049/jimmunol.1101235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K (2010) STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39:493–506. doi:10.1016/j.molcel.2010.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q, Johnson DS, Chen Y, O’Neill LA (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11:141–147. doi:10.1038/ni.1828

    Article  CAS  PubMed  Google Scholar 

  19. Feng J, Li A, Deng J, Yang Y, Dang L, Ye Y, Li Y, Zhang W (2014) miR-21 attenuates lipopolysaccharide-induced lipid accumulation and inflammatory response: potential role in cerebrovascular disease. Lipids Health Dis 13:27. doi:10.1186/1476-511X-13-27

    Article  PubMed  PubMed Central  Google Scholar 

  20. Catalan V, Gomez-Ambrosi J, Rodriguez A, Ramirez B, Valenti V, Moncada R, Silva C, Salvador J, Fruhbeck G (2015) Peripheral mononuclear blood cells contribute to the obesity-associated inflammatory state independently of glycemic status: involvement of the novel proinflammatory adipokines chemerin, chitinase-3-like protein 1, lipocalin-2 and osteopontin. Genes Nutr 10:460. doi:10.1007/s12263-015-0460-8

    Article  PubMed  Google Scholar 

  21. Olivieri F, Rippo MR, Prattichizzo F, Babini L, Graciotti L, Recchioni R, Procopio AD (2013) Toll like receptor signaling in “inflammaging”: microRNA as new players. Immun Ageing 10:11. doi:10.1186/1742-4933-10-11

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee YS, Dutta A (2009) MicroRNAs in cancer. Annu Rev Pathol 4:199–227. doi:10.1146/annurev.pathol.4.110807.092222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX, Shao JY (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14:2348–2360. doi:10.1261/rna.1034808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26:2799–2803. doi:10.1038/sj.onc.1210083

    Article  CAS  PubMed  Google Scholar 

  25. Zhong X, Chung AC, Chen HY, Dong Y, Meng XM, Li R, Yang W, Hou FF, Lan HY (2013) miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56:663–674. doi:10.1007/s00125-012-2804-x

    Article  CAS  PubMed  Google Scholar 

  26. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:980–984. doi:10.1038/nature07511

    Article  CAS  PubMed  Google Scholar 

  27. Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116:258–267. doi:10.1161/CIRCULATIONAHA.107.687947

    Article  CAS  PubMed  Google Scholar 

  28. Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ (2012) Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol 53:64–72. doi:10.1016/j.yjmcc.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  29. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817. doi:10.1161/CIRCRESAHA.110.226357

    Article  CAS  PubMed  Google Scholar 

  30. Ling HY, Hu B, Hu XB, Zhong J, Feng SD, Qin L, Liu G, Wen GB, Liao DF (2012) MiRNA-21 reverses high glucose and high insulin induced insulin resistance in 3T3-L1 adipocytes through targeting phosphatase and tensin homologue. Exp Clin Endocrinol Diabetes 120:553–559. doi:10.1055/s-0032-1311644

    Article  CAS  PubMed  Google Scholar 

  31. Dicker D, Salook MA, Marcoviciu D, Djaldetti M, Bessler H (2013) Role of peripheral blood mononuclear cells in the predisposition of obese individuals to inflammation and infection. Obes Facts 6:146–151. doi:10.1159/000350775

    Article  CAS  PubMed  Google Scholar 

  32. Costinean S, Sandhu SK, Pedersen IM, Tili E, Trotta R, Perrotti D, Ciarlariello D, Neviani P, Harb J, Kauffman LR, Shidham A, Croce CM (2009) Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood 114:1374–1382. doi:10.1182/blood-2009-05-22081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27:4373–4379. doi:10.1038/onc.2008.72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the assistance provided by the staff of the Endocrinology and Metabolism Research Institute of Tehran University of Medical Sciences. We also thank all volunteers for their participation in the study. This work was financially supported by a grant (1391-01-97-1427) from the Diabetes Research Center, Endocrinology and Metabolism Research Institute of Tehran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Meshkani.

Ethics declarations

Conflict of interest

The authors state that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazloom, H., Alizadeh, S., Esfahani, E.N. et al. Decreased expression of microRNA-21 is associated with increased cytokine production in peripheral blood mononuclear cells (PBMCs) of obese type 2 diabetic and non-diabetic subjects. Mol Cell Biochem 419, 11–17 (2016). https://doi.org/10.1007/s11010-016-2743-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2743-9

Keywords

Navigation