Skip to main content
Log in

Investigation of the role of nitric oxide/soluble guanylyl cyclase pathway in ascorbic acid-mediated protection against acute kidney injury in rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The present study investigated the possible involvement of nitric oxide/soluble guanylyl cyclase (NO/sGC) pathway in ascorbic acid (AA)-mediated protection against acute kidney injury (AKI) in rats. The rats were subjected to bilateral renal ischemia by occluding renal pedicles for 40 min followed by reperfusion for 24 h. The AKI was assessed in terms of measuring creatinine clearance (CrCl), blood urea nitrogen (BUN), plasma uric acid, potassium level, fractional excretion of sodium (FeNa), and microproteinuria. The NO level and oxidative stress in renal tissues were assessed by measuring myeloperoxidase activity, thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione level. AA (50 and 100 mg/kg, p.o.) was administered for 3 days before subjecting rats to AKI. In separate groups, the nitric oxide synthase inhibitor, L-NAME (20 mg/kg, i.p.) and sGC inhibitor, methylene blue (50 mg/kg, i.p.) was administered prior to AA treatment in rats. The significant decrease in CrCl and increase in BUN, plasma uric acid, potassium, FeNa, microproteinuria, and oxidative stress in renal tissues demonstrated ischemia–reperfusion-induced AKI in rats. The AA treatment ameliorated ischemia–reperfusion-induced AKI along with the increase in renal NO level. The pretreatment with L-NAME and methylene blue abolished protective effect of AA. It is concluded that AA protects against ischemia–reperfusion-induced AKI. Moreover, the NO/sGC pathway finds its definite involvement in AA-mediated reno-protective effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. James M, Pannu N (2009) Methodological considerations for observational studies of acute kidney injury using existing data sources. J Nephrol 22:295–305

    CAS  PubMed  Google Scholar 

  2. Nissenson AR (1998) Acute renal failure: definition and pathogenesis. Kidney Int Suppl 66:7–10

    Google Scholar 

  3. Jefayri MK, Grace PA, Mathie RT (2000) Attenuation of reperfusion injury by renal ischemia preconditioning: role of NO. BJU Int 85:1007–1013

    Article  CAS  PubMed  Google Scholar 

  4. Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. N Engl J Med 334:1448–1460

    Article  CAS  PubMed  Google Scholar 

  5. Weinberg JM, Venkatachalam MA, Roeser NF, Saikumar P, Dong Z, Senter RA, Nissim I (2000) Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury. Am J Physiol Renal Physiol 279:927–943

    Google Scholar 

  6. Sekhon CS, Sekhon BK, Singh I, Orak JK, Singh AK (2003) Attenuation of renal ischemia reperfusion injury by triple drug therapy. J Nephrol 16:63–74

    CAS  PubMed  Google Scholar 

  7. Parikh CR, Jani A, Melnikov VY, Faubel S, Edelstein CL (2004) Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 43:405–414

    Article  CAS  PubMed  Google Scholar 

  8. Kapper S, Beck G, Riedel S, Prem K, Haak M, van der Woude FJ, Yard BA (2002) Modulation of chemokine production and expression of adhesion molecules in renal tubular epithelial and endothelial cells by catecholamines. Transplantation 74:253–260

    Article  CAS  PubMed  Google Scholar 

  9. Korhonen R, Lahti A, Hamalainen M, Kankaanrant H, Moilanen E (2002) Dexamethasone inhibits inducible nitric-oxide synthase expression and nitric oxide production by destabilizing mRNA in lipopolysaccharide. Mol Pharmacol 3:698–704

    Article  Google Scholar 

  10. Chander V, Chopra K (2005) Renal protective effect of molsidomine and l-arginine in ischemia–reperfusion induced injury in rats. J Surg Res 128:132–139

    Article  CAS  PubMed  Google Scholar 

  11. Hobbs AJ (1997) Soluble guanylate cyclase: an old therapeutic target re-visited. Br J Pharmacol 5:637–640

    Google Scholar 

  12. Li Y, Tong X, Maimaitiyiming H, Clemons K, Cao JM, Wang S (2012) Overexpression of cGMP-dependent protein kinase I (PKG-I) attenuates ischemia–reperfusion induced kidney injury. Am J Physiol Renal Physiol 302:561–570

    Article  Google Scholar 

  13. Hosseinzadeh H, Sadeghnia HR, Ziaee T, Danaee A (2005) Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia–reperfusion-induced oxidative damage in rats. J Pharm Pharm Sci 8:387–393

    CAS  PubMed  Google Scholar 

  14. Valko M, Leifritz D, Moncola J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  15. Sebrel WH, Harris RS (1967) The vitamins: chemistry, physiology, pathology and methods, 2nd edn. Academic press, New York

    Google Scholar 

  16. Wilson JX (2002) The physiological role of dehydroascorbic acid. FEBS Lett 527:5–9

    Article  CAS  PubMed  Google Scholar 

  17. Korkmaz A, Kolankaya D (2009) The protective effects of ascorbic acid against renal ischemia–reperfusion injury in male rats. Ren Fail 31:36–43

    Article  CAS  PubMed  Google Scholar 

  18. Buttros JB, Bergamaschi CT, Ribeiro DA, Fracalossi AC, Campos RR (2009) Cardioprotective actions of ascorbic acid during isoproterenol-induced acute myocardial infarction in rats. Pharmacology 84:29–37

    Article  CAS  PubMed  Google Scholar 

  19. Rana T, Bera AK, Das S, Pan D, Bandopadhyay S, Bhattacharya D, Das SK (2010) Supplementation of ascorbic acid prevents oxidative damage in arsenic loaded hepatic tissue of rat: an ex vivo study. Hum Exp Toxicol 29:965–972

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez-Ramirez M, Razo-Juarez LI, Sauer-Ramirez JL, Gonzalez-Trujano ME, Salgado-Ceballos H, Orozco-Suarez S (2010) Anticonvulsive effect of vitamin C on pentylenetetrazol-induced seizures in immature rats. Pharmacol Biochem Behav 97:267–272

    Article  CAS  PubMed  Google Scholar 

  21. Yan J, Tie G, Messina LM (2012) Tetrahydrobiopterin, l-arginine and vitamin C act synergistically to decrease oxidative stress, increase nitric oxide and improve blood flow after induction of hind limb ischemia in the rat. Mol Med 18:676–684

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Green LC, Wagner DA, Joseph G, Skipper PL, Wishnok J, Steven RT (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  24. Bradley PP, Priebcat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78:206–209

    Article  CAS  PubMed  Google Scholar 

  25. Nichans WG, Samuelson B (1968) Formation of malondialdehyde from phospholipids arachidonate during microsomal lipid peroxidation. Eur J Biochem 6:126–130

    Article  Google Scholar 

  26. Arora S, Kaur T, Kaur A, Singh AP (2014) Glycine aggravates ischemia reperfusion-induced acute kidney injury through N-methyl-d-aspartate receptor activation in rats. Mol Cell Biochem 393:123–131

    Article  CAS  PubMed  Google Scholar 

  27. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  28. Zimmerman BJ, Granger DN (1992) Reperfusion injury. Surg Clin North Am 72:65–83

    CAS  PubMed  Google Scholar 

  29. Bonventre JV, Weinberg JM (2003) Recent advances in pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 14:2199–2210

    Article  PubMed  Google Scholar 

  30. Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195

    Article  CAS  PubMed  Google Scholar 

  31. Marletta MA, Rusche KM, Spiering MM (1998) Reactions catalyzed by tetrahydrobiopterin-free nitric oxide synthase. Biochemistry 44:15503–15512

    Google Scholar 

  32. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 1:593–615

    Article  Google Scholar 

  33. Ignarro LJ (2002) Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 53:503–514

    CAS  PubMed  Google Scholar 

  34. Yamashita H, Akamine S, Sumida Y, Inoue M, Sawada T, Nagayasu T, Oka T (2004) Inhaled nitric oxide attenuates apoptosis in ischemia–reperfusion injury of the rabbit lung. Ann Thorac Surg 78:292–297

    Article  PubMed  Google Scholar 

  35. Trifilieff A, Fujitani Y, Mentz F, Dugas B, Fuentes M, Bertrand C (2000) Inducible nitric oxide synthase inhibitors suppress airway inflammation in mice through down-regulation of chemokine expression. J Immunol 165:1526–1533

    Article  CAS  PubMed  Google Scholar 

  36. Schutte H, Witzenrath M, Mayer K, Weissmann N, Schell A, Rosseau S, Seeger W, Grimminger F (2000) The PDE inhibitor zaprinast enhances NO-mediated protection against vascular leakage in reperfused lungs. Am J Physiol Lung Cell Mol Physiol 279:496–502

    Google Scholar 

  37. Beavo JA, Brunton LL (2002) Cyclic nucleotide research-still expanding after half a century. Nat Rev Mol Cell Biol 3:710–718

    Article  CAS  PubMed  Google Scholar 

  38. Pilz RB, Casteel DE (2003) Regulation of gene expression by cyclic GMP. Circ Res 93:1034–1046

    Article  CAS  PubMed  Google Scholar 

  39. Higa OH, Parra ER, Ab’Saber AM, Farhat C, Higa R, Capelozzi VL (2007) Protective effects of ascorbic acid pretreatment in a rat model of intestinal ischemia reperfusion injury: a histomorphometric study. Clinics (Sao Paulo) 62:315–320

    Article  Google Scholar 

Download references

Conflict of interest

The authors do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrit Pal Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koul, V., Kaur, A. & Singh, A.P. Investigation of the role of nitric oxide/soluble guanylyl cyclase pathway in ascorbic acid-mediated protection against acute kidney injury in rats. Mol Cell Biochem 406, 1–7 (2015). https://doi.org/10.1007/s11010-015-2392-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2392-4

Keywords

Navigation