Skip to main content
Log in

Exogenous hydrogen sulfide alleviates high glucose-induced cardiotoxicity via inhibition of leptin signaling in H9c2 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hydrogen sulfide (H2S) protects cardiomyoblasts against high glucose (HG)-induced injury by inhibiting the activation of p38 mitogen-activated protein kinase (MAPK). This study aims to determine whether the leptin–p38 MAPK pathway is involved in HG-induced injury and whether exogenous H2S prevents the HG-induced insult through inhibition of the leptin–p38 MAPK pathway in H9c2 cells. H9c2 cells were treated with 35 mM glucose (HG) for 24 h to establish a HG-induced cardiomyocyte injury model. Cell viability; mitochondrial membrane potential (ΔΨ m); apoptosis; reactive oxygen species (ROS) level; and leptin, leptin receptor, and p38 MAPK expression level were measured by the methods indicated. The results showed pretreatment of H9c2 cells with NaHS before exposure to HG led to an increase in cell viability, decrease in apoptotic cells, ROS generation, and a loss of ΔΨ m. Exposure of H9c2 cells to 35 mM glucose for 24 h significantly upregulated the expression levels of leptin and leptin receptors. The increased expression levels of leptin and leptin receptors were markedly attenuated by pretreatment with 400 μM NaHS. In addition, the HG-induced increase in phosphorylated (p) p38 MAPK expression was ameliorated by pretreatment with 50 ng/ml leptin antagonist. In conclusion, the present study has demonstrated for the first time that the leptin–p38 MAPK pathway contributes to the HG-induced injury in H9c2 cells and that exogenous H2S protects H9c2 cells against HG-induced injury at least in part by inhibiting the activation of leptin–p38 MAPK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. van der Heijden AA, Van’T RE, Bot SD et al (2013) Risk of a recurrent cardiovascular event in individuals with type 2 diabetes or intermediate hyperglycemia: The Hoorn Study. Diabetes Care 36:3498–3502

    Article  PubMed Central  PubMed  Google Scholar 

  2. Thangaraj A, Thomas PA, Geraldine P (2013) Ameliorative effect of naringenin on hyperglycemia mediated inflammation in hepatic and pancreatic tissues of Wistar rats with streptozotocin–nicotinamide-induced experimental diabetes mellitus. Free Radic Res 47:783–803

    Google Scholar 

  3. Corvera S, Gealekman O (2014) Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochim Biophys Acta 1842:463–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Miguel-Soca PE (2013) Links between obesity and diabetes mellitus. Semergen 39:402

    Article  CAS  PubMed  Google Scholar 

  5. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Article  CAS  PubMed  Google Scholar 

  6. Ricci R, Bevilacqua F (2012) The potential role of leptin and adiponectin in obesity: a comparative review. Vet J 191:292–298

    Article  CAS  PubMed  Google Scholar 

  7. Fonfara S, Hetzel U, Tew SR, Dukes-McEwan J, Cripps P, Clegg PD (2011) Leptin expression in dogs with cardiac disease and congestive heart failure. J Vet Intern Med 25:1017–1024

    Article  CAS  PubMed  Google Scholar 

  8. Matsui H, Motooka M, Koike H et al (2007) Ischemia/reperfusion in rat heart induces leptin and leptin receptor gene expression. Life Sci 80:672–680

    Article  CAS  PubMed  Google Scholar 

  9. Cheng YS, Dai DZ, Dai Y (2009) Stress-induced cardiac insufficiency relating to abnormal leptin and FKBP12.6 is ameliorated by CPU0213, an endothelin receptor antagonist, which is not affected by the CYP3A suppressing effect of erythromycin. J Pharm Pharmacol 61:569–576

    Article  CAS  PubMed  Google Scholar 

  10. Rajapurohitam V, Kilic A, Javadov S, Karmazyn M (2012) Role of NF-kappaB and p38 MAPK activation in mediating angiotensin II and endothelin-1-induced stimulation in leptin production and cardiomyocyte hypertrophy. Mol Cell Biochem 366:287–297

    Article  CAS  PubMed  Google Scholar 

  11. Xu W, Wu W, Chen J et al (2013) Exogenous hydrogen sulfide protects H9c2 cardiac cells against high glucose-induced injury by inhibiting the activities of the p38 MAPK and ERK1/2 pathways. Int J Mol Med 32:917–925

    CAS  PubMed  Google Scholar 

  12. Stein A, Bailey SM (2013) Redox biology of hydrogen sulfide: implications for physiology, pathophysiology, and pharmacology. Redox Biol 1:32–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Guettler C, Kubes P (2013) Hydrogen sulfide, another simple gas with complex biology. Am J Physiol Gastrointest Liver Physiol 304:G1066–G1069

    Article  CAS  PubMed  Google Scholar 

  14. Lu F, Xing J, Zhang X et al (2013) Exogenous hydrogen sulfide prevents cardiomyocyte apoptosis from cardiac hypertrophy induced by isoproterenol. Mol Cell Biochem 38:41–50

    Article  Google Scholar 

  15. Predmore BL, Kondo K, Bhushan S et al (2012) The polysulfide diallyl trisulfide protects the ischemic myocardium by preservation of endogenous hydrogen sulfide and increasing nitric oxide bioavailability. Am J Physiol Heart Circ Physiol 302:H2410–H2418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wei H, Zhang R, Jin H et al (2010) Hydrogen sulfide attenuates hyperhomocysteinemia-induced cardiomyocytic endoplasmic reticulum stress in rats. Antioxid Redox Signal 12:1079–1091

    Article  CAS  PubMed  Google Scholar 

  17. Lan A, Liao X, Mo L et al (2011) Hydrogen sulfide protects against chemical hypoxia-induced injury by inhibiting ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells. PLoS ONE 6:e25921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Dong XB, Yang CT, Zheng DD et al (2012) Inhibition of ROS-activated ERK1/2 pathway contributes to the protection of H2S against chemical hypoxia-induced injury in H9c2 cells. Mol Cell Biochem 362:149–157

    Article  CAS  PubMed  Google Scholar 

  19. Peake BF, Nicholson CK, Lambert JP et al (2013) Hydrogen sulfide preconditions the db/db diabetic mouse heart against ischemia-reperfusion injury by activating Nrf2 signaling in an Erk-dependent manner. Am J Physiol Heart Circ Physiol 304:H1215–H1224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lee GH, Proenca R, Montez JM et al (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–635

    Article  CAS  PubMed  Google Scholar 

  21. Tartaglia LA, Dembski M, Weng X et al (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271

    Article  CAS  PubMed  Google Scholar 

  22. Shin EJ, Schram K, Zheng XL, Sweeney G (2009) Leptin attenuates hypoxia/reoxygenation-induced activation of the intrinsic pathway of apoptosis in rat H9c2 cells. J Cell Physiol 221:490–497

    Article  CAS  PubMed  Google Scholar 

  23. Pemberton CJ (2008) Leptin-induced cardiac hypertrophy: RhoAing a lipid raft down a protective p38 MAPK signalling stream? Cardiovasc Res 77:4–5

    Article  CAS  PubMed  Google Scholar 

  24. Samuelsson AM, Clark J, Rudyk O et al (2013) Experimental hyperleptinemia in neonatal rats leads to selective leptin responsiveness, hypertension, and altered myocardial function. Hypertension 62:627–633

    Article  CAS  PubMed  Google Scholar 

  25. Balasubramaniyan V, Nalini N (2007) Effect of leptin on peroxidation and antioxidant defense in ethanol-supplemented Mus musculus heart. Fundam Clin Pharmacol 21:245–253

    Article  CAS  PubMed  Google Scholar 

  26. Zeidan A, Javadov S, Chakrabarti S, Karmazyn M (2008) Leptin-induced cardiomyocyte hypertrophy involves selective caveolae and RhoA/ROCK-dependent p38 MAPK translocation to nuclei. Cardiovasc Res 77:64–72

    Article  CAS  PubMed  Google Scholar 

  27. Schram K, De Girolamo S, Madani S, Munoz D, Thong F, Sweeney G (2010) Leptin regulates MMP-2, TIMP-1 and collagen synthesis via p38 MAPK in HL-1 murine cardiomyocytes. Cell Mol Biol Lett 15:551–563

    Article  CAS  PubMed  Google Scholar 

  28. Purdham DM, Zou MX, Rajapurohitam V, Karmazyn M (2004) Rat heart is a site of leptin production and action. Am J Physiol Heart Circ Physiol 287:H2877–H2884

    Article  CAS  PubMed  Google Scholar 

  29. Denroche HC, Levi J, Wideman RD et al (2011) Leptin therapy reverses hyperglycemia in mice with streptozotocin-induced diabetes, independent of hepatic leptin signaling. Diabetes 60:1414–1423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Meek TH, Matsen ME, Dorfman MD et al (2013) Leptin Action in the ventromedial hypothalamic nucleus is sufficient, but not necessary, to normalize diabetic hyperglycemia. Endocrinology 154:3067–3076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kojima S, Asakawa A, Amitani H et al (2009) Central leptin gene therapy, a substitute for insulin therapy to ameliorate hyperglycemia and hyperphagia, and promote survival in insulin-deficient diabetic mice. Peptides 30:962–966

    Article  CAS  PubMed  Google Scholar 

  32. Procaccini C, Lourenco EV, Matarese G, La Cava A (2009) Leptin signaling: a key pathway in immune responses. Curr Signal Transduct Ther 4:22–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Tsai KH, Wang WJ, Lin CW et al (2012) NADPH oxidase-derived superoxide anion-induced apoptosis is mediated via the JNK-dependent activation of NF-kappaB in cardiomyocytes exposed to high glucose. J Cell Physiol 227:1347–1357

    Article  CAS  PubMed  Google Scholar 

  34. Donato JJ, Frazao R, Elias CF (2010) The PI3K signaling pathway mediates the biological effects of leptin. Arq Bras Endocrinol Metabol 54:591–602

    Article  PubMed  Google Scholar 

  35. Zhang W, Niu M, Yan K et al (2013) Stat3 pathway correlates with the roles of leptin in mouse liver fibrosis and sterol regulatory element binding protein-1c expression of rat hepatic stellate cells. Int J Biochem Cell Biol 45:736–744

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Deng Z, Liao J et al (2013) Leptin attenuates cerebral ischemia injury through the promotion of energy metabolism via the PI3 K/Akt pathway. J Cereb Blood Flow Metab 33:567–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. van den Brink GR, O’Toole T, Hardwick JC et al (2000) Leptin signaling in human peripheral blood mononuclear cells, activation of p38 and p42/44 mitogen-activated protein (MAP) kinase and p70 S6 kinase. Mol Cell Biol Res Commun 4:144–150

    Article  PubMed  Google Scholar 

  38. Zhuo Y, Chen PF, Zhang AZ, Zhong H, Chen CQ, Zhu YZ (2009) Cardioprotective effect of hydrogen sulfide in ischemic reperfusion experimental rats and its influence on expression of survivin gene. Biol Pharm Bull 32:1406–1410

    Article  CAS  PubMed  Google Scholar 

  39. Whiteman M, Gooding KM, Whatmore JL et al (2010) Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia 53:1722–1726

    Article  CAS  PubMed  Google Scholar 

  40. Yusuf M, Kwong HB, Hsu A, Whiteman M, Bhatia M, Moore PK (2005) Streptozotocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulfide biosynthesis. Biochem Biophys Res Commun 333:1146–1152

    Article  CAS  PubMed  Google Scholar 

  41. Ahmad FU, Sattar MA, Rathore HA et al (2012) Exogenous hydrogen sulfide (H2S) reduces blood pressure and prevents the progression of diabetic nephropathy in spontaneously hypertensive rats. Ren Fail 34:203–210

    PubMed  Google Scholar 

  42. Gao Y, Yao X, Zhang Y et al (2011) The protective role of hydrogen sulfide in myocardial ischemia-reperfusion-induced injury in diabetic rats. Int J Cardiol 152:177–183

    Article  PubMed  Google Scholar 

  43. Suzuki K, Olah G, Modis K et al (2011) Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. Proc Natl Acad Sci USA 108:13829–13834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Nature Science Foundation of China (No. 81270296) and Science and Technology Planning Project of Guangdong Province in China (2010B080701105 and 2010B080701044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Hong Liu or Xin-Xue Liao.

Additional information

Xiao-Dong Zhuang and Xun Hu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, XD., Hu, X., Long, M. et al. Exogenous hydrogen sulfide alleviates high glucose-induced cardiotoxicity via inhibition of leptin signaling in H9c2 cells. Mol Cell Biochem 391, 147–155 (2014). https://doi.org/10.1007/s11010-014-1997-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-1997-3

Keywords

Navigation