Skip to main content
Log in

The apical sorting signal for human GLUT9b resides in the N-terminus

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The two splice variants of human glucose transporter 9 (hGLUT9) are targeted to different polarized membranes. hGLUT9a traffics to the basolateral membrane, whereas hGLUT9b traffics to the apical region. This study examines the sorting mechanism of these variants, which differ only in their N-terminal domain. Mutating a di-leucine motif unique to GLUT9a did not affect targeting. Chimeric proteins were made using GLUT1, a basolaterally targeted transporter, and GLUT3, an apically targeted protein whose signal lies in the C-terminus. Overexpression of the chimeric proteins in polarized cells demonstrates that the N-terminus of hGLUT9b contains a signal capable of redirecting GLUT1 to the apical membrane. The N-terminus of hGLUT9a, however, does not contain a basolateral signal sufficient enough to redirect GLUT3. Portions of the GLUT9a N-terminus were substituted with corresponding portions of the GLUT9b N-terminus to determine the motif responsible for apical targeting. The first 16 amino acids were not found to be a sufficient apical signal. The last ten amino acids of the N-termini differ only in amino-acid class at one location. In the B-form, leucine, a hydrophobic residue, is substituted for lysine, a basic residue, found in the A-form. However, mutation of the leucine in hGLUT9b to a lysine resulted in retention of the apical signal. We therefore believe the apical signal exists as an interplay between the final ten amino acids of the N-terminus and another motif within the protein such as the intracellular loop or other motifs within the N-terminus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Joost HG, Thorens B (2001) The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol 18:247–256

    Article  PubMed  CAS  Google Scholar 

  2. Caulfield MJ, Munroe PB, O’Neill D, Witkowska K, Charchar FJ, Doblado M, Evans S, Eyheramendy S, Onipinla A, Howard P, Shaw-Hawkins S, Dobson RJ, Wallace C, Newhouse SJ, Brown M, Connell JM, Dominiczak A, Farrall M, Lathrop GM, Samani NJ, Kumari M, Marmot M, Brunner E, Chambers J, Elliott P, Kooner J, Laan M, Org E, Veldre G, Viigimaa M, Cappuccio FP, Ji C, Iacone R, Strazzullo P, Moley KH, Cheeseman C (2008) SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 5(10):e197

    Article  PubMed  Google Scholar 

  3. Doblado M (2009) Moley KH: facilitative glucose transporter 9, a unique hexose and urate transporter. Am J Physiol Endocrinol Metab 297(4):E831–E835

    Article  PubMed  CAS  Google Scholar 

  4. Augustin R, Carayannopoulos MO, Dowd LO, Phay JE, Moley JF, Moley KH (2004) Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking. J Biol Chem 279:16229–16236

    Article  PubMed  CAS  Google Scholar 

  5. Keembiyehetty C, Augustin R, Carayannopoulos MO, Steer S, Manolescu A, Cheeseman CI, Moley KH (2006) Mouse glucose transporter 9 splice variants are expressed in adult liver and kidney and are up-regulated in diabetes. Mol Endocrinol 20:686–697

    Article  PubMed  CAS  Google Scholar 

  6. Scheepers A, Joost HG, Schurmann A (2004) The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. JPEN J Parenter Enteral Nutr 28:364–371

    Article  PubMed  CAS  Google Scholar 

  7. Wu X, Freeze HH (2002) GLUT14, a duplicon of GLUT3, is specifically expressed in testis as alternative splice forms. Genomics 80:553–557

    Article  PubMed  CAS  Google Scholar 

  8. Pascoe WS, Inukai K, Oka Y, Slot JW, James DE (1996) Differential targeting of facilitative glucose transporters in polarized epithelial cells. Am J Physiol 271:C547–C554

    PubMed  CAS  Google Scholar 

  9. Inukai K, Shewan AM, Pascoe WS, Katayama S, James DE, Oka Y (2004) Carboxy terminus of glucose transporter 3 contains an apical membrane targeting domain. Mol Endocrinol 18:339–349

    Article  PubMed  CAS  Google Scholar 

  10. Garippa RJ, Johnson A, Park J, Petrush RL, McGraw TE (1996) The carboxyl terminus of GLUT4 contains a serine-leucine-leucine sequence that functions as a potent internalization motif in Chinese hamster ovary cells. J Biol Chem 271:20660–20668

    Article  PubMed  CAS  Google Scholar 

  11. Aerni-Flessner LB, Otu MC, Moley KH (2011) The amino acids upstream of NH(2)-terminal dileucine motif play a role in regulating the intracellular sorting of the Class III transporters GLUT8 and GLUT12. Mol Membr Biol 28:30–41

    Article  PubMed  CAS  Google Scholar 

  12. Flessner LB, Moley KH (2009) Similar [DE]XXXL[LI] motifs differentially target GLUT8 and GLUT12 in Chinese hamster ovary cells. Traffic. 10:324–333

    Article  PubMed  CAS  Google Scholar 

  13. Zegers MM, Hoekstra D (1998) Mechanisms and functional features of polarized membrane traffic in epithelial and hepatic cells. Biochem J 336(Pt 2):257–269

    PubMed  CAS  Google Scholar 

  14. Rodriguez-Boulan E, Kreitzer G, Musch A (2005) Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 6:233–247

    Article  PubMed  CAS  Google Scholar 

  15. Miranda KC, Khromykh T, Christy P, Le TL, Gottardi CJ, Yap AS, Stow JL, Teasdale RD (2001) A dileucine motif targets E-cadherin to the basolateral cell surface in Madin-Darby canine kidney and LLC-PK1 epithelial cells. J Biol Chem 276:22565–22572

    Article  PubMed  CAS  Google Scholar 

  16. Bello V, Goding JW, Greengrass V, Sali A, Dubljevic V, Lenoir C, Trugnan G, Maurice M (2001) Characterization of a di-leucine-based signal in the cytoplasmic tail of the nucleotide-pyrophosphatase NPP1 that mediates basolateral targeting but not endocytosis. Mol Biol Cell 12:3004–3015

    PubMed  CAS  Google Scholar 

  17. Verhey KJ, Birnbaum MJ (1994) A Leu–Leu sequence is essential for COOH-terminal targeting signal of GLUT4 glucose transporter in fibroblasts. J Biol Chem 269:2353–2356

    PubMed  CAS  Google Scholar 

  18. Kuwahara M, Asai T, Terada Y, Sasaki S (2005) The C-terminal tail of aquaporin-2 determines apical trafficking. Kidney Int 68:1999–2009

    Article  PubMed  CAS  Google Scholar 

  19. Subramanian VS, Marchant JS, Boulware MJ, Said HM (2004) A C-terminal region dictates the apical plasma membrane targeting of the human sodium-dependent vitamin C transporter-1 in polarized epithelia. J Biol Chem 279:27719–27728

    Article  PubMed  CAS  Google Scholar 

  20. Inukai K, Shewan AM, Pascoe WS, Katayama S, James DE, Oka Y (2003) Carboxy terminus of glucose transporter GLUT3 contains an apical membrane targeting domain. Mol Endocrinol 18:339–349

    Google Scholar 

  21. Wehrle-Haller B, Imhof BA (2001) Stem cell factor presentation to c-Kit. Identification of a basolateral targeting domain. J Biol Chem 276:12667–12674

    Article  PubMed  CAS  Google Scholar 

  22. Inukai K, Takata K, Asano T, Katagiri H, Ishihara H, Nakazaki M, Fukushima Y, Yazaki Y, Kikuchi M, Oka Y (1997) Targeting of GLUT1-GLUT5 chimeric proteins in the polarized cell line Caco-2. Mol Endocrinol 11:442–449

    Article  PubMed  CAS  Google Scholar 

  23. Suzuki T, Fujikura K, Koyama H, Matsuzaki T, Takahashi Y, Takata K (2001) The apical localization of SGLT1 glucose transporter is determined by the short amino acid sequence in its N-terminal domain. Eur J Cell Biol 80:765–774

    Article  PubMed  CAS  Google Scholar 

  24. Koivisto UM, Hubbard AL, Mellman I (2001) A novel cellular phenotype for familial hypercholesterolemia due to a defect in polarized targeting of LDL receptor. Cell 105:575–585

    Article  PubMed  CAS  Google Scholar 

  25. Witkowska K, Smith KM, Yao SY, Ng AM, O’Neill D, Karpinski E, Young JD, Cheeseman CI (2012) Human SLC2A9a and SLC2A9b isoforms mediate electrogenic transport of urate with different characteristics in the presence of hexoses. Am J Physiol Renal Physiol 303:F527–F539

    Google Scholar 

  26. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-bases prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Irving Boime for his thoughtful advice and critical reading of this manuscript. This study was supported by a Research Grant from the American Diabetes Association awarded to KHM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelle H. Moley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bibee, K.P., Augustin, R., Gazit, V. et al. The apical sorting signal for human GLUT9b resides in the N-terminus. Mol Cell Biochem 376, 163–173 (2013). https://doi.org/10.1007/s11010-013-1564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1564-3

Keywords

Navigation