Skip to main content

Advertisement

Log in

PPARγ antagonist GW9662 induces functional estrogen receptor in mouse mammary organ culture: potential translational significance

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) plays a central role in regulating metabolism, including interaction with the estrogen receptor-α (ERα). Significantly, PPARγ activity can be modulated by small molecules to control cancer both in vitro and in vivo (Yin et al., Cancer Res 69:687–694, 2009). Here, we evaluated the effects of the PPARγ agonist GW7845 and the PPARγ antagonist GW9662 on DMBA-induced mammary alveolar lesions (MAL) in a mouse mammary organ culture. The results were as follows: (a) the incidence of MAL development was significantly inhibited by GW 7845 and GW 9662; (b) GW9662 but not GW7845, in the presence of estradiol, induced ER and PR expression in mammary glands and functional ERα in MAL; (c) while GW9662 inhibited expression of adipsin and ap2, GW 7845 enhanced expression of these PPARγ-response genes; and (d) Tamoxifen caused significant inhibition of GW9662 treated MAL, suggesting that GW9662 sensitizes MAL to antiestrogen treatment, presumably through rendering functional ERα and induction of PR. The induction of ERα by GW9662, including newer analogs, may permit use of anti-ER strategies to inhibit breast cancer in ER− patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yin Y, Yuan H, Zeng X, Kopelovich L, Glazer RI (2009) Inhibition of peroxisome proliferator activated receptor gamma increases estrogen receptor dependent tumor speciation. Cancer Res 69:687–694

    Article  PubMed  CAS  Google Scholar 

  2. Wagner KD, Wagner N (2010) Peroxisome proliferator activated receptor beta/delta acts as regulator of metabolism linked to multiple cellular functions. Pharmacol Ther 125:423–425

    Article  PubMed  CAS  Google Scholar 

  3. Siersbaek R, Nielsen R, Mandrup S (2010) PPARgamma in adipocyte differentiation and metabolism novel insights from genome wide studies. FEBS Lett 584:3242–3249

    Article  PubMed  CAS  Google Scholar 

  4. Ondrey F (2009) Peroxisome proliferator-activated receptor gamma pathway targeting in carcinogenesis: Implications for chemoprevention. Clin Cancer Res 15:2–8

    Article  PubMed  CAS  Google Scholar 

  5. Grommes C, Landreth GE, Schlegel U, heneka MT (2005) The nonthiazolidinedione tyrosine based peroxisome proliferator-activated receptor gamma ligand GW7845 induces apoptosis and limits migration and invasion of rat and human glioma cells. J Pharamcol Exp Ther 313:806–813

    Article  CAS  Google Scholar 

  6. Reka AK, Goswami MT, Krishanapuram R, Standiford TJ, Kehsamouni VG (2011) Molecular cross-regulation between PPARgamma and other signaling pathways: implications for lung cancer therapy. Lung Cancer 72:154–159

    Article  PubMed  Google Scholar 

  7. Wang P, Dharmaraj N, Brayman MJ, Carson DD (2010) Peroxisome proliferator-activated receptor gamma activation inhibits progesterone stimulated human MUC1 expression. Mol Endocrinol 24:1368–1379

    Article  PubMed  CAS  Google Scholar 

  8. Wasielewski R, Hasselmann S, Ruschoff J, Fissler-Eckhoff A, Kreipe H (2008) Proficiency testing of immunohistochemical biomarker assays in breast cancer. Virchows Arch 453:537–543

    Article  PubMed  Google Scholar 

  9. Gown AM (2008) Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol 21(Suppl 2):S2–S15

    Google Scholar 

  10. Barry M, Kell MR (2009) Enhancing the adjuvant treatment of hormone receptor positive breast cancer. Breast Cancer 15:194–198

    CAS  Google Scholar 

  11. Wishart GC, Gaston M, Poultsidis A, Purushotam AD (2002) Hormone receptor status in primary breast cancer—time for consensus. Eur J Cancer 38:1201–1203

    Article  PubMed  CAS  Google Scholar 

  12. Mehta RG, Bhat KPL, Hawthorne ME, Kopelovich L, Mehta RR, Christov K (2001) Induction of atypical hyperplasia in mouse mammary gland organ culture. J Natl Cancer Inst 93:1103–1106

    Article  PubMed  CAS  Google Scholar 

  13. Mehta RG, Naithani R, Huma L, Hawthorne ME, Moriarty RM, McCormick DL et al (2008) Efficacy of chemopreventive agents in mouse mammary gland organ culture (MMOC) model: a comprehensive review. Curr Med Chem 15:2785–2825

    Article  PubMed  CAS  Google Scholar 

  14. Peng X, Mehta RG (2007) Differential expression of prohibitin is correlated with dual action of vitamin D as a proliferative and antiproliferative hormone in breast epithelial cells. J Steroid Biochem Mol Biol 103:446–450

    Article  PubMed  CAS  Google Scholar 

  15. Yu HN, Noh EM, Lee YR, Roh SG, Song EK, Han MK (2008) Troglitazone enhances tamoxifen-induced growth inhibitory activity of MCF-7 cells. Biochem Biophys Res Commun 377:242–247

    Article  PubMed  CAS  Google Scholar 

  16. Zheng ZH, Yang Y, Lu XH, Zhang H, Shui XX, Liu C et al (2011) Mycophenolic acid induces adipocyte-like differentiation and reversal of malignancy of breast cancer cells partly through PPARγ. Eur J Pharmacol 658:1–8

    Article  PubMed  CAS  Google Scholar 

  17. Mehta RG, Williamson E, Patel M, Koeffler HP (2000) PPARγ ligand and retinoids prevent preneoplastic mammary lesions. J Natl Cancer Inst 92:418–423

    Article  PubMed  CAS  Google Scholar 

  18. Yuan H, Kopelovich L, Yin Y, Lu J, Glazer RI (2012) Drug-targeted inhibition of peroxisome proliferator-activated receptor gamma enhances the chemopreventive effect of anti-estrogen. Oncotarget 3:345–356

    PubMed  Google Scholar 

  19. Bonofiglio D, Gabriele S, Aquila S, Catalano S, Gentile M, Middea E et al (2005) Estrogen receptor alpha binds to peroxisome proliferator-activated receptor response element and negatively interferes with peroxisome proliferator activated receptor gamma signalling. Clin Cancer Res 11:6139–6147

    Article  PubMed  CAS  Google Scholar 

  20. Eberhardt NL, Grebe SK, Mclver B, Reddi HV (2010) The role of PAX8/PPARgamma fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol Cell Endocrinol 321:50–56

    Article  PubMed  CAS  Google Scholar 

  21. Burton JD, Goldenberg DM, Blumenthal RD (2008) Potential of peroxisome proliferator activated receptor gamma antagonist compounds as therapeutic agents for a wide range of cancer types. PPAR Res 2008:494161

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Cancer Institute contract N0-CN-43303. We thank Dr. Nishant Tiwari for his help during the early part of the project.

Conflict of interest

There is no conflict of interest for any of the authors listed on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra G. Mehta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, R.G., Peng, X., Roy, S. et al. PPARγ antagonist GW9662 induces functional estrogen receptor in mouse mammary organ culture: potential translational significance. Mol Cell Biochem 372, 249–256 (2013). https://doi.org/10.1007/s11010-012-1466-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1466-9

Keywords

Navigation