Skip to main content
Log in

Collateral vessel growth induced by femoral artery ligature is impaired by denervation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Innervation plays an important role in development and remodeling of blood vessels. However, very little is known whether innervation is involved in arteriogenesis. In the present study, we tested the hypothesis that innervation may contribute to the process of arteriogenesis induced by ligature of femoral artery in rat/rabbit hind limb with or without denervation. We found that: (1) angiography showed more collateral vessels in the ligature side than that in ligature plus denervation side; (2) collateral vessels in denervation side was characterized by an inward remodeling; (3) in both collateral vessels (CVs) from only femoral ligature side as well as the ligature plus denervation side, ICAM-1 and VCAM-1 expression was up-regulated but increased VCAM-1 was more evident in the adventitia of collateral vessels of only femoral ligature side; (4) 7 days after surgery, in CVs from the femoral ligature side only, numerous macrophages (RAM11 positive cells) and high cell proliferation ratio (ki67 positive cells) were detected, but they were less in the denervation side. In conclusion, our data demonstrate for the first time that neural regulation is one of the factors that contributes to collateral vessel growth in rat/rabbit hind limb ischemic model by showing collateral vessel growth induced by femoral artery ligature is impaired by denervation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Helisch A, Arteriogenesis SchaperW (2003) The development and growth of collateral arteries. Microcirculation 10(1):83–97

    PubMed  Google Scholar 

  2. Schaper W, Scholz D (2003) Factors regulating arteriogenesis. Arterioscler Thromb Vasc Biol 23(7):1143–1151. doi:10.1161/01.ATV.0000069625.11230.96

    Article  CAS  PubMed  Google Scholar 

  3. Unthank JL, Fath SW, Burkhart HM, Miller SC, Dalsing MC (1996) Wall remodeling during luminal expansion of mesenteric arterial collaterals in the rat. Circ Res 79(5):1015–1023

    CAS  PubMed  Google Scholar 

  4. Cai W, Schaper W (2008) Mechanisms of arteriogenesis. Acta Biochim Biophys Sin (Shanghai) 40(8):681–692. doi:10.1111/j.1745-7270.2008.00436.x

    CAS  Google Scholar 

  5. Suchting S, Bicknell R, Eichmann A (2006) Neuronal clues to vascular guidance. Exp Cell Res 312(5):668–675. doi:10.1016/j.yexcr.2005.11.009

    Article  CAS  PubMed  Google Scholar 

  6. Kirchmair R, Gander R, Egger M, Hanley A, Silver M, Ritsch A, Murayama T, Kaneider N, Sturm W, Kearny M, Fischer-Colbrie R, Kircher B, Gaenzer H, Wiedermann CJ, Ropper AH, Losordo DW, Patsch JR, Schratzberger P (2004) The neuropeptide secretoneurin acts as a direct angiogenic cytokine in vitro and in vivo. Circulation 109(6):777–783. doi:10.1161/01.CIR.0000112574.07422.C1

    Article  CAS  PubMed  Google Scholar 

  7. Schgoer W, Theurl M, Jeschke J, Beer AG, Albrecht K, Gander R, Rong S, Vasiljevic D, Egger M, Wolf AM, Frauscher S, Koller B, Tancevski I, Patsch JR, Schratzberger P, Piza-Katzer H, Ritsch A, Bahlmann FH, Fischer-Colbrie R, Wolf D, Kirchmair R (2009) Gene therapy with the angiogenic cytokine secretoneurin induces therapeutic angiogenesis by a nitric oxide-dependent mechanism. Circ Res 105(10):994–1002. doi:10.1161/CIRCRESAHA.109.199513

    Article  CAS  PubMed  Google Scholar 

  8. Lee EW, Michalkiewicz M, Kitlinska J, Kalezic I, Switalska H, Yoo P, Sangkharat A, Ji H, Li L, Michalkiewicz T, Ljubisavljevic M, Johansson H, Grant DS, Zukowska Z (2003) Neuropeptide Y induces ischemic angiogenesis and restores function of ischemic skeletal muscles. J Clin Invest 111(12):1853–1862. doi:10.1172/JCI200316929

    CAS  PubMed  Google Scholar 

  9. Chalothorn D, Zhang H, Clayton JA, Thomas SA, Faber JE (2005) Catecholamines augment collateral vessel growth and angiogenesis in hindlimb ischemia. Am J Physiol Heart Circ Physiol 289(2):H947–H959. doi:10.1152/ajpheart.00952.2004

    Article  CAS  PubMed  Google Scholar 

  10. Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ (2002) Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109(6):693–705

    Article  CAS  PubMed  Google Scholar 

  11. Kacem K, Sercombe C, Hammami M, Vicaut E, Sercombe R (2006) Sympathectomy causes aggravated lesions and dedifferentiation in large rabbit atherosclerotic arteries without involving nitric oxide. J Vasc Res 43(3):289–305. doi:10.1159/000093010

    Article  PubMed  Google Scholar 

  12. Wolf C, Cai WJ, Vosschulte R, Koltai S, Mousavipour D, Scholz D, Afsah-Hedjri A, Schaper W, Schaper J (1998) Vascular remodeling and altered protein expression during growth of coronary collateral arteries. J Mol Cell Cardiol 30(11):2291–2305. doi:10.1006/jmcc.1998.0790

    Article  CAS  PubMed  Google Scholar 

  13. Cai WJ, Kocsis E, Scholz D, Luo X, Schaper W, Schaper J (2004) Presence of Cx37 and lack of desmin in smooth muscle cells are early markers for arteriogenesis. Mol Cell Biochem 262(1–2):17–23

    Article  CAS  PubMed  Google Scholar 

  14. Borisov AB, Huang SK, Carlson BM (2000) Remodeling of the vascular bed and progressive loss of capillaries in denervated skeletal muscle. Anat Rec 258(3):292–304

    Article  CAS  PubMed  Google Scholar 

  15. Hobara N, Goda M, Kitamura Y, Takayama F, Kawasaki H (2006) Innervation and functional changes in mesenteric perivascular calcitonin gene-related peptide- and neuropeptide Y-containing nerves following topical phenol treatment. Neuroscience 141(2):1087–1099. doi:10.1016/j.neuroscience.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  16. Shyy YJ, Hsieh HJ, Usami S, Chien S (1994) Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc Natl Acad Sci USA 91(11):4678–4682

    Article  CAS  PubMed  Google Scholar 

  17. Lan Q, Mercurius KO, Davies PF (1994) Stimulation of transcription factors NF kappa B and AP1 in endothelial cells subjected to shear stress. Biochem Biophys Res Commun 201(2):950–956. doi:10.1006/bbrc.1994.1794

    Article  CAS  PubMed  Google Scholar 

  18. Mitsumata M, Fishel RS, Nerem RM, Alexander RW, Berk BC (1993) Fluid shear stress stimulates platelet-derived growth factor expression in endothelial cells. Am J Physiol 265(1 Pt 2):H3–H8

    CAS  PubMed  Google Scholar 

  19. Schaper W, Pasyk S (1976) Influence of collateral flow on the ischemic tolerance of the heart following acute and subacute coronary occlusion. Circulation 53(3 Suppl):I57–I62

    CAS  PubMed  Google Scholar 

  20. Boot CR, Groothuis JT, Van Langen H, Hopman MT (2002) Shear stress levels in paralyzed legs of spinal cord-injured individuals with and without nerve degeneration. J Appl Physiol 92(6):2335–2340. doi:10.1152/japplphysiol.00340.2001

    PubMed  Google Scholar 

  21. Kacem K, Seylaz J, Issertial O, Aubineau P (1995) Chemical sympathectomy favours vimentin expression in arterial smooth muscle cells of young rats. J Auton Nerv Syst 53(1):57–68. doi:10.1016/0165-1838(94)00165-G

    Article  CAS  PubMed  Google Scholar 

  22. Cai WJ, Koltai S, Kocsis E, Scholz D, Kostin S, Luo X, Schaper W, Schaper J (2003) Remodeling of the adventitia during coronary arteriogenesis. Am J Physiol Heart Circ Physiol 284(1):H31–H40. doi:10.1152/ajpheart.00478.2002

    CAS  PubMed  Google Scholar 

  23. Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W (1998) Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest 101(1):40–50. doi:10.1172/JCI119877

    Article  CAS  PubMed  Google Scholar 

  24. Shimokado K, Raines EW, Madtes DK, Barrett TB, Benditt EP, Ross R (1985) A significant part of macrophage-derived growth factor consists of at least two forms of PDGF. Cell 43(1):277–286. doi:10.1016/0092-8674(85)90033-9

    Article  CAS  PubMed  Google Scholar 

  25. Hu JH, Du L, Chu T, Otsuka G, Dronadula N, Jaffe M, Gill SE, Parks WC, Dichek DA (2010) Overexpression of urokinase by plaque macrophages causes histological features of plaque rupture and increases vascular matrix metalloproteinase activity in aged apolipoprotein e-null mice. Circulation 121(14):1637–1644. doi:10.1161/CIRCULATIONAHA.109.914945

    Article  CAS  PubMed  Google Scholar 

  26. Kusch A, Tkachuk S, Lutter S, Haller H, Dietz R, Lipp M, Dumler I (2002) Monocyte-expressed urokinase regulates human vascular smooth muscle cell migration in a coculture model. Biol Chem 383(1):217–221. doi:10.1515/BC.2002.022

    Article  CAS  PubMed  Google Scholar 

  27. Menshikov M, Elizarova E, Plakida K, Timofeeva A, Khaspekov G, Beabealashvilli R, Bobik A, Tkachuk V (2002) Urokinase upregulates matrix metalloproteinase-9 expression in THP-1 monocytes via gene transcription and protein synthesis. Biochem J 367(Pt 3):833–839. doi:10.1042/BJ20020663

    Article  CAS  PubMed  Google Scholar 

  28. Pipp F, Boehm S, Cai WJ, Adili F, Ziegler B, Karanovic G, Ritter R, Balzer J, Scheler C, Schaper W, Schmitz-Rixen T (2004) Elevated fluid shear stress enhances postocclusive collateral artery growth and gene expression in the pig hind limb. Arterioscler Thromb Vasc Biol 24(9):1664–1668. doi:10.1161/01.ATV.0000138028.14390.e4

    Article  CAS  PubMed  Google Scholar 

  29. Dansky HM, Barlow CB, Lominska C, Sikes JL, Kao C, Weinsaft J, Cybulsky MI, Smith JD (2001) Adhesion of monocytes to arterial endothelium and initiation of atherosclerosis are critically dependent on vascular cell adhesion molecule-1 gene dosage. Arterioscler Thromb Vasc Biol 21(10):1662–1667. doi:10.1161/hq1001.096625

    Article  CAS  PubMed  Google Scholar 

  30. Heil M, Schaper W (2004) Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ Res 95(5):449–458. doi:10.1161/01.RES.0000141145.78900.44

    Article  CAS  PubMed  Google Scholar 

  31. Mousa SA, Shaqura M, Brendl U, Al-Khrasani M, Fürst S, Schäfer M (2010) Involvement of the peripheral sensory and sympathetic nervous system in the vascular endothelial expression of ICAM-1 and the recruitment of opioid-containing immune cells to inhibit inflammatory pain. Brain Behav Immun 24(8):1310–1323. doi:10.1016/j.bbi.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  32. Francis J, Zhang ZH, Weiss RM, Felder RB (2004) Neural regulation of the proinflammatory cytokine response to acute myocardial infarction. Am J Physiol Heart Circ Physiol 287(2):H791–H797. doi:10.1152/ajpheart.00099.2004

    Article  CAS  PubMed  Google Scholar 

  33. Laine P, Naukkarinen A, Heikkilä L, Penttilä A, Kovanen PT (2000) Adventitial mast cells connect with sensory nerve fibers in atherosclerotic coronary arteries. Circulation 101(14):1665–1669

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC of Chinese government (No: 30771134 and No: 30971532).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Jun Cai.

Additional information

Authors Ming-ying Luo, Bao-lin Yang, Feng Ye, Xiaoqiong Wu, and Song Peng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, My., Yang, Bl., Ye, F. et al. Collateral vessel growth induced by femoral artery ligature is impaired by denervation. Mol Cell Biochem 354, 219–229 (2011). https://doi.org/10.1007/s11010-011-0821-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0821-6

Keywords

Navigation