Skip to main content
Log in

Apelin stimulates glucose uptake through the PI3K/Akt pathway and improves insulin resistance in 3T3-L1 adipocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Apelin, a cytokine mainly secreted by adipocytes, is closely related with insulin resistance. The underlying molecular mechanisms of how apelin affects insulin resistance, however, are poorly understood. This study aimed to investigate the effect of apelin on glucose metabolism and insulin resistance in 3T3-L1 adipocytes. After 10 ng/ml TNF-α treatment for 24 h, insulin-stimulated glucose uptake was reduced by 47% in 3T3-L1 adipocytes. Apelin treatment improved glucose uptake in a time- and dose-dependent manner. Treatment of 1,000 nM apelin for 60 min maximally augmented glucose uptake in insulin-resistant 3T3-L1 adipocytes. Furthermore, apelin pre-incubation also increased adipocytes’ insulin-stimulated glucose uptake, and PI3K/Akt pathway were involved in these effects. In addition, immunocytochemistry staining and western blotting analysis indicated that apelin could increase glucose transporter 4 translocation from the cytoplasm to the plasma membrane. Apelin also increased the anti-inflammatory adipokine adiponectin mRNA expression while reducing that of pro-inflammatory adipokine interleukin-6 in insulin-resistant 3T3-L1 adipocytes. These results suggest that apelin stimulates glucose uptake through the PI3K/Akt pathway, promotes GLUT4 translocation from the cytoplasm to the plasma membrane, and modulates inflammatory responses in insulin-resistant 3T3-L1 adipocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, Hoogeveen R, Folsom AR, Heiss G (2003) Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 52(7):1799–1805

    Article  PubMed  CAS  Google Scholar 

  2. Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Investig 116(7):1793–1801

    Article  PubMed  CAS  Google Scholar 

  3. Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, Kurokawa T, Onda H, Fujino M (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251(2):471–476. doi:10.1006/bbrc.1998.9489

    Article  PubMed  CAS  Google Scholar 

  4. Boucher J, Masri B, Daviaud D, Gesta S, Guigne C, Mazzucotelli A, Castan-Laurell I, Tack I, Knibiehler B, Carpene C, Audigier Y, Saulnier-Blache JS, Valet P (2005) Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146(4):1764–1771. doi:10.1210/en.2004-1427

    Article  PubMed  CAS  Google Scholar 

  5. Zhang Q, Yao F, Raizada MK, O’Rourke ST, Sun C (2009) Apelin gene transfer into the rostral ventrolateral medulla induces chronic blood pressure elevation in normotensive rats. Circ Res. doi:10.1161/CIRCRESAHA.108.192302

  6. Japp AG, Newby DE (2008) The apelin-APJ system in heart failure: pathophysiologic relevance and therapeutic potential. Biochem Pharmacol 75(10):1882–1892. doi:10.1016/j.bcp.2007.12.015

    Article  PubMed  CAS  Google Scholar 

  7. Carpene C, Dray C, Attane C, Valet P, Portillo MP, Churruca I, Milagro FI, Castan-Laurell I (2007) Expanding role for the apelin/APJ system in physiopathology. J Physiol Biochem 63(4):359–373

    Article  PubMed  CAS  Google Scholar 

  8. Erdem G, Dogru T, Tasci I, Sonmez A, Tapan S (2008) Low plasma apelin levels in newly diagnosed type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 116(5):289–292. doi:10.1055/s-2007-1004564

    Article  PubMed  CAS  Google Scholar 

  9. Perrini S, Natalicchio A, Laviola L, Belsanti G, Montrone C, Cignarelli A, Minielli V, Grano M, De Pergola G, Giorgino R, Giorgino F (2004) Dehydroepiandrosterone stimulates glucose uptake in human and murine adipocytes by inducing GLUT1 and GLUT4 translocation to the plasma membrane. Diabetes 53(1):41–52

    Article  PubMed  CAS  Google Scholar 

  10. Thomson MJ, Williams MG, Frost SC (1997) Development of insulin resistance in 3T3-L1 adipocytes. J Biol Chem 272(12):7759–7764

    Article  PubMed  CAS  Google Scholar 

  11. Prasad CN, Anjana T, Banerji A, Gopalakrishnapillai A (2010) Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells. FEBS Lett 584(3):531–536. doi:10.1016/j.febslet.2009.11.092

    Google Scholar 

  12. Ladeiras-Lopes R, Ferreira-Martins J, Leite-Moreira AF (2008) The apelinergic system: the role played in human physiology and pathology and potential therapeutic applications. Arq Bras Cardiol 90(5):343–349

    Article  PubMed  Google Scholar 

  13. Falcao-Pires I, Leite-Moreira AF (2005) Apelin: a novel neurohumoral modulator of the cardiovascular system. Pathophysiologic importance and potential use as a therapeutic target. Rev Port Cardiol 24(10):1263–1276

    PubMed  Google Scholar 

  14. Wang C, Du JF, Wu F, Wang HC (2008) Apelin decreases the SR Ca2+ content but enhances the amplitude of [Ca2+]i transient and contractions during twitches in isolated rat cardiac myocytes. Am J Physiol Heart Circ Physiol 294(6):H2540–H2546. doi:10.1152/ajpheart.00046.2008

    Article  PubMed  CAS  Google Scholar 

  15. Sheikh AY, Chun HJ, Glassford AJ, Kundu RK, Kutschka I, Ardigo D, Hendry SL, Wagner RA, Chen MM, Ali ZA, Yue P, Huynh DT, Connolly AJ, Pelletier MP, Tsao PS, Robbins RC, Quertermous T (2008) In vivo genetic profiling and cellular localization of apelin reveals a hypoxia-sensitive, endothelial-centered pathway activated in ischemic heart failure. Am J Physiol Heart Circ Physiol 294(1):H88–H98. doi:10.1152/ajpheart.00935.2007

    Article  PubMed  CAS  Google Scholar 

  16. Charles CJ (2007) Putative role for apelin in pressure/volume homeostasis and cardiovascular disease. Cardiovasc Hematol Agents Med Chem 5(1):1–10

    PubMed  CAS  Google Scholar 

  17. Andersen CU, Markvardsen LH, Hilberg O, Simonsen U (2009) Pulmonary apelin levels and effects in rats with hypoxic pulmonary hypertension. Respir Med 103(11):1663–1671. doi:10.1016/j.rmed.2009.05.011

    Article  PubMed  CAS  Google Scholar 

  18. Dogru T, Nuri Ercin C, Erdem G, Kilciler G, Tapan S (2009) The hepatic apelin system: a new therapeutic target for liver disease. Hepatology 49(3):1055. doi:10.1002/hep.22688

    Article  PubMed  Google Scholar 

  19. Ercin CN, Dogru T, Tapan S, Kara M, Haymana C, Karadurmus N, Karslioglu Y, Acikel C (2009) Plasma apelin levels in subjects with nonalcoholic fatty liver disease. Metabolism. doi:10.1016/j.metabol.2009.10.019

  20. Principe A, Melgar-Lesmes P, Fernandez-Varo G, del Arbol LR, Ros J, Morales-Ruiz M, Bernardi M, Arroyo V, Jimenez W (2008) The hepatic apelin system: a new therapeutic target for liver disease. Hepatology 48(4):1193–1201. doi:10.1002/hep.22467

    Article  PubMed  CAS  Google Scholar 

  21. Malyszko J, Malyszko JS, Pawlak K, Wolczynski S, Mysliwiec M (2008) Apelin, a novel adipocytokine, in relation to endothelial function and inflammation in kidney allograft recipients. Transpl Proc 40(10):3466–3469. doi:10.1016/j.transproceed.2008.06.059

    Article  CAS  Google Scholar 

  22. Dray C, Knauf C, Daviaud D, Waget A, Boucher J, Buleon M, Cani PD, Attane C, Guigne C, Carpene C, Burcelin R, Castan-Laurell I, Valet P (2008) Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab 8(5):437–445. doi:10.1016/j.cmet.2008.10.003

    Article  PubMed  CAS  Google Scholar 

  23. Goldstein BJ (2002) Insulin resistance as the core defect in type 2 diabetes mellitus. Am J Cardiol 90(5, Supplement 1):3–10

    Article  Google Scholar 

  24. Wang YQ, Yao MH (2009) Effects of chromium picolinate on glucose uptake in insulin-resistant 3T3-L1 adipocytes involve activation of p38 MAPK. J Nutr Biochem. doi:10.1016/j.jnutbio.2008.09.002

  25. Ross SA, Chen X, Hope HR, Sun S, McMahon EG, Broschat K, Gulve EA (2000) Development and comparison of two 3T3-L1 adipocyte models of insulin resistance: increased glucose flux vs glucosamine treatment. Biochem Biophys Res Commun 273(3):1033–1041. doi:10.1006/bbrc.2000.3082

    Article  PubMed  CAS  Google Scholar 

  26. Kim ED, Bayaraa T, Shin EJ, Hyun CK (2009) Fibroin-derived peptides stimulate glucose transport in normal and insulin-resistant 3T3-L1 adipocytes. Biol Pharm Bull 32(3):427–433

    Article  PubMed  CAS  Google Scholar 

  27. Nguyen MT, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI, Zalevsky J, Dahiyat BI, Chi NW, Olefsky JM (2005) JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem 280(42):35361–35371. doi:10.1074/jbc.M504611200

    Article  PubMed  CAS  Google Scholar 

  28. Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440(7086):944–948

    Article  PubMed  CAS  Google Scholar 

  29. Moon MK, Kim M, Chung SS, Lee HJ, Koh SH, Svovoda P, Jung MH, Cho YM, Park YJ, Choi SH, Jang HC, Park KS, Lee HK (2010) S-Adenosyl-l-methionine ameliorates TNFalpha-induced insulin resistance in 3T3-L1 adipocytes. Exp Mol Med 42(5):345–352

    Google Scholar 

  30. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867. doi:10.1038/nature05485

    Article  PubMed  CAS  Google Scholar 

  31. Engelman JA, Berg AH, Lewis RY, Lisanti MP, Scherer PE (2000) Tumor necrosis factor alpha-mediated insulin resistance, but not dedifferentiation, is abrogated by MEK1/2 inhibitors in 3T3-L1 adipocytes. Mol Endocrinol 14(10):1557–1569

    Article  PubMed  CAS  Google Scholar 

  32. Kameji H, Mochizuki K, Miyoshi N, Goda T (2010) beta-Carotene accumulation in 3T3-L1 adipocytes inhibits the elevation of reactive oxygen species and the suppression of genes related to insulin sensitivity induced by tumor necrosis factor-alpha. Nutrition 26(11–12):1151–1156. doi:10.1016/j.nut.2009.09.006

    Article  PubMed  CAS  Google Scholar 

  33. Gallant M, Odei-Addo F, Frost CL, Levendal RA (2009) Biological effects of THC and a lipophilic cannabis extract on normal and insulin resistant 3T3-L1 adipocytes. Phytomedicine. doi:10.1016/j.phymed.2009.02.013

  34. Yoshizaki T, Milne JC, Imamura T, Schenk S, Sonoda N, Babendure JL, Lu JC, Smith JJ, Jirousek MR, Olefsky JM (2009) SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 29(5):1363–1374. doi:10.1128/MCB.00705-08

    Article  PubMed  CAS  Google Scholar 

  35. Ishizuka K, Usui I, Kanatani Y, Bukhari A, He J, Fujisaka S, Yamazaki Y, Suzuki H, Hiratani K, Ishiki M, Iwata M, Urakaze M, Haruta T, Kobayashi M (2007) Chronic tumor necrosis factor-alpha treatment causes insulin resistance via insulin receptor substrate-1 serine phosphorylation and suppressor of cytokine signaling-3 induction in 3T3-L1 adipocytes. Endocrinology 148(6):2994–3003. doi:10.1210/en.2006-1702

    Article  PubMed  CAS  Google Scholar 

  36. Pillion DJ, Kim SJ, Kim H, Meezan E (1992) Insulin signal transduction: the role of protein phosphorylation. Am J Med Sci 303(1):40–52

    Article  PubMed  CAS  Google Scholar 

  37. Patki V, Buxton J, Chawla A, Lifshitz L, Fogarty K, Carrington W, Tuft R, Corvera S (2001) Insulin action on GLUT4 traffic visualized in single 3T3-L1 adipocytes by using ultra-fast microscopy. Mol Biol Cell 12(1):129–141

    PubMed  CAS  Google Scholar 

  38. Fernandez-Real JM, Ricart W (2003) Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 24(3):278–301. doi:10.1210/er.2002-0010

    Article  PubMed  CAS  Google Scholar 

  39. Lago F, Dieguez C, Gomez-Reino J, Gualillo O (2007) The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor Rev 18(3–4):313–325. doi:10.1016/j.cytogfr.2007.04.007

    Article  PubMed  CAS  Google Scholar 

  40. Banga A, Unal R, Tripathi P, Pokrovskaya I, Owens RJ, Kern PA, Ranganathan G (2009) Adiponectin translation is increased by the PPAR{gamma} agonists pioglitazone and {omega}-3 fatty acids. Am J Physiol Endocrinol Metab 296(3):E480–E489. doi:10.1152/ajpendo.90892.2008

    Article  PubMed  CAS  Google Scholar 

  41. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7(8):941–946. doi:10.1038/9098490984

    Article  PubMed  CAS  Google Scholar 

  42. Spranger J, Kroke A, Mohlig M, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF (2003) Adiponectin and protection against type 2 diabetes mellitus. Lancet 361(9353):226–228. doi:10.1016/S0140-6736(03)12255-6

    Article  PubMed  CAS  Google Scholar 

  43. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8(7):731–737. doi:10.1038/nm724nm724

    Article  PubMed  CAS  Google Scholar 

  44. Ouchi N, Walsh K (2007) Adiponectin as an anti-inflammatory factor. Clin Chim Acta 380(1–2):24–30. doi:10.1016/j.cca.2007.01.026

    Article  PubMed  CAS  Google Scholar 

  45. Ahima RS, Flier JS (2000) Adipose tissue as an endocrine organ. Trends Endocrinol Metab 11(8):327–332

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Nature Science Foundation of China (F.C., NO. 81090274, NO. 30970845; C.W. NO. 30900611) and Xijing Research Boosting Program (F.C., NO. XJZT08Z04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haichang Wang or Feng Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, S., Sun, F., Li, W. et al. Apelin stimulates glucose uptake through the PI3K/Akt pathway and improves insulin resistance in 3T3-L1 adipocytes. Mol Cell Biochem 353, 305–313 (2011). https://doi.org/10.1007/s11010-011-0799-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0799-0

Keywords

Navigation