Skip to main content
Log in

Splice isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4: Expression and hypoxic regulation

  • Short Communication
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) is responsible for maintaining the cellular levels of fructose-2,6-bisphosphate which is a key regulator of glycolysis. Here we have studied the expression of PFKFB-4 isozyme in the DB-1 melanoma cells. An additional isoform of PFKFB-4 mRNA with 148 bases insert in the amino-terminal region at high constitutive levels was identified in these cells. The expression of this splice isoform as well as main isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was responsible to hypoxia and dimethyloxalylglycine, an inhibitor of HIF-1 α hydroxylase enzymes, suggesting that the hypoxia responsiveness of PFKFB-4 gene in these cells is regulated by HIF-1α protein. Hypoxic induction of PFKFB4 mRNA in the DB-1 melanoma cells correlates with the expression of PFKFB-3 and VEGF mRNA which are known as HIF-1 dependent genes. Thus, our results clearly demonstrated the existence of splice isoform of PFKFB-4 mRNA in the DB-1 melanoma cells and its overexpression under hypoxic conditions. (Mol Cell Biochem xxx: 277–234, 2005)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Pilkis SJ, Claus TH, Kurland IJ, Lange AJ: 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a metabolic signaling enzyme. Annu Rev Biochem 64: 799–835, 1995

    Article  PubMed  CAS  Google Scholar 

  2. Okar DA, Lange AJ: Fructose-2,6-bisphosphate and control of carbohydrate metabolism in eukaryotes. Biofactors 10: 1–14, 1999

    PubMed  CAS  Google Scholar 

  3. Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L: 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-head with a bifunctional enzyme that controls glycolysis. Biochem J 381: 561–579, 2004

    PubMed  CAS  Google Scholar 

  4. Rousseau GG, Hue L: Mammalian 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a bifunctional enzyme that control glycolysis. Prog Nucleic Acid Res Mol Biol 45: 99–127, 1993

    PubMed  CAS  Google Scholar 

  5. Okar DA, Manzano A, Navarro-Sabate A, Riera L, Bartrons R, Lange A: PFK-2/FBPase-2: Maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci 26: 30–35, 2001

    Article  PubMed  CAS  Google Scholar 

  6. Sakata J, Abe Y, Uyeda K: Molecular cloning of the DNA and expression and characterization of rat testes fructose-6-phosphate,2-kinase: fructose-2,6-bisphosphatase. J Biol Chem 266: 15764–15770, 1991

    PubMed  CAS  Google Scholar 

  7. Manzano A, Perez JX, Nadal M, Estivill X, Lange A, Bartrons R: Cloning, expression and chromosomal localization of a human testis 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene. Gene 229: 83–89, 1999

    Article  PubMed  CAS  Google Scholar 

  8. Sakakibara R, Okudaira T, Fujiwara K, Kato M, Hirata T, Yamanaka S, Naito M, Fukasawa M: Tissue distribution of placenta-type 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Biochem Biophys Res Commun 257: 177–181, 1999

    Article  PubMed  CAS  Google Scholar 

  9. Minchenko O, Opentanova I, Caro J: Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 gene family (PFKFB-1-4) expression in vivo. FEBS Lett 554: 264–270, 2003

    Article  PubMed  CAS  Google Scholar 

  10. Gleade JM, Ratcliffe PJ: Hypoxia and the regulation of gene expression. Mol Med Today 4: 122–129, 1998

    Google Scholar 

  11. Ratcliffe PJ, O'Rourke JF, Maxwell PH, Pugh CW: Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. J Exp Biol 201: 1153–1162, 1998

    PubMed  CAS  Google Scholar 

  12. Semenza GL: O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. J Appl Physiol 96: 1173–1177, 2004

    PubMed  CAS  Google Scholar 

  13. Semenza GL: Hypoxia-inducible factor-1 and the molecular physiology of oxygen homeostasis. J Lab Clin Med 131: 207–214, 1998

    Article  PubMed  CAS  Google Scholar 

  14. Metzen E, Ratcliffe PJ: HIF hydroxylation and cellular oxygen sensing. Biol Chem 385: 223–230, 2004

    Article  PubMed  CAS  Google Scholar 

  15. Ratcliffe PJ: From erythropoietin to oxygen: hypoxia-inducible factor hydroxylases and the hypoxia signal pathway. Blood Purif 20: 445–450, 2002

    Article  PubMed  CAS  Google Scholar 

  16. Wykoff CC, Pugh CW, Maxwell PH, Harris AL, Ratcliffe PJ: Identification of novel hypoxia dependent and independent target genes of the von Hippel-Lindau (VHL) tumor suppressor by mRNA differential expression profiling. Oncogene 19: 6297–6305, 2000

    Article  PubMed  CAS  Google Scholar 

  17. Wykoff CC, Pugh CW, Harris AL, Maxwell PH, Ratcliffe PJ: The HIF pathway: implications for patterns of gene expression in cancer. Novartis Found Symp 240: 212–225, 2001

    PubMed  CAS  Google Scholar 

  18. Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM, Johnson RS: Hypoxia-inducible factor-1 is a positive factor in solid tumor growth. Cancer Res 60: 4010–4015, 2000

    PubMed  CAS  Google Scholar 

  19. Minchenko A, Caro J: Regulation of endothelin-1 gene expression in human microvascular endothelial cells by hypoxia and cobalt: role of hypoxia responsive element. Mol Cell Biochem 208: 53–62, 2000

    Article  PubMed  CAS  Google Scholar 

  20. Schofield CJ, Ratcliffe PJ: Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5: 343–354, 2004

    Article  PubMed  CAS  Google Scholar 

  21. Minchenko AG, Leshchinsky I, Opentanova I, Sang N, Srinivas V, Armstead VE, Caro J: Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem 277: 6183–6187, 2002

    Article  PubMed  CAS  Google Scholar 

  22. Minchenko OH, Opentanova IL, Minchenko DO, Ogura T, Esumi H: Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 gene via hypoxia-inducible factor-1α activation. FEBS Lett 554: 14–20, 2004

    Google Scholar 

  23. Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF, Van den Berghe G, Carling D, Hue L: Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischemia. Curr Biol 19: 1247–1255, 2000

    Google Scholar 

  24. Hue L, Beauloye C, Marsin AS, Bertrand L, Horman S, Rider MH: Insulin and ischemia stimulate glycolysis by acting on the same targets through different and opposing signaling pathways. J Mol Cell Cardiol 34: 1091–1097, 2002

    Article  PubMed  CAS  Google Scholar 

  25. Marsin AS, Douzin C, Bertrand L, Hue L: The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J Biol Chem 277: 30778–30783, 2002

    Article  PubMed  CAS  Google Scholar 

  26. Hue L, Beauloye C, Bertrand L, Horman S, Krause U, Marsin A-S, Meisse D, Vertommen D, Rider MH: New targets of AMP-activated protein kinase. Biochem Soc Trans 31: 213–215, 2003

    PubMed  CAS  Google Scholar 

  27. Minchenko A, Bauer T, Salceda S, Caro J: Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Invest 71: 374–379, 1994

    PubMed  CAS  Google Scholar 

  28. Armstead VE, Minchenko AG, Campbell B, Lefer AM: P-selectin is up-regulated in vital organs during murine traumatic shock. FASEB J 11: 1271–1279, 1997

    PubMed  CAS  Google Scholar 

  29. Van Schaftingen E, Lederer B, Bartrons R, Hers H-G: A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose-2,6-bisphosphate. Eur J Biochem 129: 191–195, 1982

    PubMed  CAS  Google Scholar 

  30. Minchenko OH, Opentanova IL, Minchenko DO, Kurashima Y, Esumi H: Homo sapiens 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) mRNA, complete cds, alternatively spliced. GenBank Accession Number AY 714243, 2004

  31. Wenger RH: Cellular adaptation to hypoxia: O2-Sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 16: 1151–1162, 2002

    Article  PubMed  CAS  Google Scholar 

  32. Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z, Mitchell R, Bucala R: High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (iPFK-2; PFKFB3) in human cancers. Cancer Res 62: 5881–5887, 2002

    PubMed  CAS  Google Scholar 

  33. Chesney J, Mitchell R, Benigni F, Bacher M, Spiegel L, Al-Abed Y, Han JH, Metz C, Bucala R: An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proc Natl Acad Sci USA 96: 3047–3052, 1999

    Article  PubMed  CAS  Google Scholar 

  34. Nissler K, Petermann H, Wenz I, Brox D: Fructose-2,6-bisphosphate metabolism in Erlich ascites tumor cells. J Cancer Res Clin Oncol 121: 739–745, 1995

    Article  PubMed  CAS  Google Scholar 

  35. Tominaga N, Minami Y, Sakakibara R, Uyeda K: Significance of the aminoterminus of rat testis fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase. J Biol Chem 268: 15951–15957, 1993

    PubMed  CAS  Google Scholar 

  36. Warburg O: On respiratory impairment in cancer cells. Science 123: 309–314, 1956

    PubMed  CAS  Google Scholar 

  37. Hopfl G, Ogunshola O, Gassmann M: HIFs and tumors – causes and consequences. Am J Physiol 286: R608–R623, 2004

    Google Scholar 

  38. Lu H, Forbes RA, Verma A: Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277: 23111–23115, 2002

    PubMed  CAS  Google Scholar 

  39. Kawaguchi T, Veech RL, Uyeda K: Regulation of energy metabolism in macrophages during hypoxia. Roles of fructose 2,6-bisphosphate and ribose 1,5-bisphosphate. J Biol Chem 276: 28554–28561, 2001

    Article  PubMed  CAS  Google Scholar 

  40. Watanabe F, Furuya E: Tissue-specific alternative splicing of rat brain fructose 6-phosphate 2-kinase/fructose 2,6-bisphosphatase. FEBS Lett 458: 304–308, 1999

    Article  PubMed  CAS  Google Scholar 

  41. Watanabe F, Furuya E: Alternative splicing of novel exons of rat heart-type fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase gene. Biochem Biophys Res Commun 282: 803–810, 2001

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr H. Minchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minchenko, O.H., Ogura, T., Opentanova, I.L. et al. Splice isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4: Expression and hypoxic regulation. Mol Cell Biochem 280, 227–234 (2005). https://doi.org/10.1007/s11010-005-8009-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-8009-6

Keyword

Navigation