Skip to main content
Log in

On the diophantine equation F \(\left( {\left( {_n^x } \right)} \right) = b\left( {_m^y } \right)\)

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

As a generalization of the results of [3] and [22], we characterize those pairs (m,n) and those polynomials b{Z}[x] of prime degree for which equation (1) has only finitely many integer solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. T. Avanesov, Solution of a problem on figurate numbers (in Russian), Acta Arith. 12 (1967), 409–420.

    Google Scholar 

  2. A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Camb. Phil. Soc. 65 (1969), 439–444.

    Google Scholar 

  3. F. Beukers, T. N. Shorey and R. Tijdeman, Irreducibility of polynomials and arithmetic progressions with equal products of terms, in: Number Theory in Progress (ed. by K. Győry, H. Iwaniec and J. Urbanowicz), Walter de Gruyter, Berlin, New York, 1999, 11–26.

    Google Scholar 

  4. Y. F. Bilu, B. Brindza, P. Kirschenhofer, Á. PintÉr and R. F. Tichy, Diophantine equations and Bernoulli polynomials, (with an appendix by A. Schinzel), Compositio Math. 131 (2002), 173–188.

    Google Scholar 

  5. Y. F. Bilu, T. Stoll and R. F. Tichy, Octahedrons with equally many lattice points, Period. Math. Hungar. 40 (2000), 229–238.

    Google Scholar 

  6. Y. F. Bilu and R. F. Tichy, The diophantine equation f(x) = g(y), Acta Arith. 95 (2000), 261–288.

    Google Scholar 

  7. D. W. Boyd and H. H. Kisilevsky, The diophantine equation u(u + 1)(u + 2) · (u + 3) = v (v + 1)(v + 2), Pacific J. Math. 40 (1972), 23–32.

    Google Scholar 

  8. B. Brindza, On S-integral solutions of the equation y m= f(x), Acta. Math. Hung. 44 (1984), 133–139.

    Google Scholar 

  9. B. Brindza and Á. PintÉr, On the irreducibility of some polynomials in two variables, Acta Arith. 82 (1997), 303–307.

    Google Scholar 

  10. J. H. E. Cohn, The diophantine equation y(y + 1)(y + 2)(y + 3) = 2x (x + 1) · (x + 2) (x + 3), Pacific J. Math. 37 (1971) 331–335.

    Google Scholar 

  11. H. Davenport, D. J. Lewis and A. Schinzel, Equations of the form f(x) = g(y), Quart. J. Math. Oxford 12 (1961), 304–312.

    Google Scholar 

  12. M. Fried, On a theorem of Ritt and related diophantine problems, J. Reine Angew.Math. 264 (1973), 40–55.

    Google Scholar 

  13. M. Fried, Variables separated polynomials, the genus 0 problem and moduli spaces, in: Number Theory in Progress (ed. by K. Győry, H. Iwaniec and J. Urbanowicz), Walter de Gruyter, Berlin, New York, 1999, 169–228.

    Google Scholar 

  14. L. Hajdu and Á. PintÉr, Combinatorial diophantine equations, Publ. Math. Debrecen 56 (2000), 391–403.

    Google Scholar 

  15. M. Kulkarni and B. Sury, On the diophantine equation x (x+1) ··· (x+(m-1)) = g(y), Indag. Math. 14 (2003), 35–44.

    Google Scholar 

  16. W. J. LeVeque, On the equation y m= f(x), Acta Arith. 9 (1964), 209–219.

    Google Scholar 

  17. R. A. MacLeod and I. Barrodale, On equal products of consecutive integers, Canad. Math. Bull. 13 (1970), 255–259.

    Google Scholar 

  18. L. J. Mordell, On the integer solutions of y(y + 1) = x(x + 1)(x + 2), Pacific J. Math. 13 (1963), 1347–1351.

    Google Scholar 

  19. Yuan Ping Zhi, On a special diophantine equation a( xn ) = by r+ c, Publ. Math. Debrecen 44 (1994), 137–143.

    Google Scholar 

  20. Á. PintÉr, A note on the diophantine equation ( x4 ) = ( y2 ), Publ. Math. Debrecen 47 (1995), 411–415.

    Google Scholar 

  21. Cs. Rakaczki, Binomial coefficients in arithmetic progressions, Publ. Math. Debrecen 57 (2000), 547–558.

    Google Scholar 

  22. Cs. Rakaczki, On the diophantine equation x(x-1) ··· (x-(m-1)) = λy(y-1) ··· (y-(n-1)) + l, Acta Arith. 110 (2003), 339–360.

    Google Scholar 

  23. A. Schinzel, Selected topics on polynomials, University of Michigan Press, Ann Arbor, 1982.

    Google Scholar 

  24. C. L. Siegel, Ñber einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys.-Math. Kl. 1929, Nr.1, 70 pp., Gesammelte Abhandlungen, Vol. I, Springer, Berlin, 1966, 209–266.

    Google Scholar 

  25. R. J. Stroeker and B. M. M. de Weger, Elliptic binomial diophantine equations, Math. Comp. 68 (1999), 1257–1281.

    Google Scholar 

  26. Sz. Tengely, On the diophantine equation F(x) = G(y), Acta Arith. 110 (2003), 185–200.

    Google Scholar 

  27. B. M. M. de Weger, A binomial diophantine equation, Quart. J. Math. Oxford, Ser. II. 47 (1996), 221–231.

    Google Scholar 

  28. B. M. M. de Weger, Equal binomial coefficients: Some elementary considerations, J. Number Theory 63 (1997), 373–386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakaczki, C. On the diophantine equation F \(\left( {\left( {_n^x } \right)} \right) = b\left( {_m^y } \right)\) . Period Math Hung 49, 119–132 (2004). https://doi.org/10.1007/s10998-004-0527-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-004-0527-6

Navigation