Skip to main content

Advertisement

Log in

Regression analysis of current status data with latent variables

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Current status data occur in many fields including demographical, epidemiological, financial, medical, and sociological studies. We consider the regression analysis of current status data with latent variables. The proposed model consists of a factor analytic model for characterizing latent variables through their multiple surrogates and an additive hazard model for examining potential covariate effects on the hazards of interest in the presence of current status data. We develop a borrow-strength estimation procedure that incorporates the expectation–maximization algorithm and correlated estimating equations. The consistency and asymptotic normality of the proposed estimators are established. A simulation study is conducted to evaluate the finite sample performance of the proposed method. A real-life study on the chronic kidney disease of type 2 diabetic patients is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amemiya Y, Fuller WA, Pantula SG (1987) The asymptotic distributions of some estimators for a factor analysis model. J Multivar Anal 22(1):51–64

    Article  MathSciNet  Google Scholar 

  • Andersen P K, Borgan O, Gill R D, Keiding N. (1992) Statistical models based on counting processes. Springer Series in Statistics. Springer

  • Anderson TW, Amemiya Y (1988) The asymptotic normal distribution of estimators in factor analysis under general conditions. Ann Statist 16(2):759–771

    Article  MathSciNet  Google Scholar 

  • Bentler P M, Wu E J C.EQS6 for Windows User Guide. Enciuo, CA.: Multivariate Software, Inc, (2002)

  • Bollen KA (1989) Structural equations with latent variables. Wiley, New York

    Book  Google Scholar 

  • Diao G, Yuan A (2019) A class of semiparametric cure models with current status data. Lifetime Data Anal 25(1):26–51

    Article  MathSciNet  Google Scholar 

  • Du M, Hu T, Sun J (2019) Semiparametric probit model for informative current status data. Stat Med 38(12):2219–2227

    Article  MathSciNet  Google Scholar 

  • Finkelstein DM (1986) A proportional hazards model for interval-censored failure time data. Biometrics 42(4):845–854

    Article  MathSciNet  Google Scholar 

  • Fleming TR, Harrington DP (1991) Counting processes and survival analysis. Wiley, New York

    MATH  Google Scholar 

  • Gaede P, Lund-Andersen H, Parving HH, Pedersen O (2008) Effect of a multifactorial intervention on mortality in type diabetes. New England J Med 358:580C591

  • He H, Cai J, Song XY, Sun LQ (2017) Analysis of proportional mean residual life model with latent variables. Stat Med 36(5):813–826

    Article  MathSciNet  Google Scholar 

  • He HJ, Pan D, Song XY, Sun LQ (2019) Additive mean residual life model with latent variables under right censoring. Stat Sinica 29(1):47–66

    MathSciNet  MATH  Google Scholar 

  • Huang J (1996) Efficient estimation for the proportional hazards model with interval censoring. Ann Stat 24(2):540–568

    Article  MathSciNet  Google Scholar 

  • Jöreskog KG, Sörbom D (1996) LISREL 8: structural equation modeling With the SIMPLIS command language. Lincolnwood, Scientific Software International, IL

    Google Scholar 

  • Lee SY, Song XY (2004) Maximum likelihood analysis of a general latent variable model with hierarchically mixed data. Biometrics 60(3):624–636

    Article  MathSciNet  Google Scholar 

  • Lee SY (2007) Structural equation modeling: a Bayesian approach. Wiley, New York

    Book  Google Scholar 

  • Lin DY, Oakes D, Ying Z (1998) Additive hazards regression with current status data. Biometrika 85(2):289–298

    Article  MathSciNet  Google Scholar 

  • Muthén L K, Muthén B O., Mplus Users Guide (5th ed.),Los Angeles, CA: Muthén and Muthén, 1998-2007

  • Ma L, Hu T, Sun J (2015) Sieve maximum likelihood regression analysis of dependent current status data. Biometrika 102(3):731–738

    Article  MathSciNet  Google Scholar 

  • Pan D, He H, Song XY, Sun LQ (2015) Regression analysis of additive hazards model with latent variables. J Am Stat Ass 110(511):1148–1159

    Article  MathSciNet  Google Scholar 

  • Rossini AJ, Tsiatis AA (1996) A semiparametric proportional odds regression model for the analysis of current status data. J Am Stat Ass 91(434):713–721

    Article  MathSciNet  Google Scholar 

  • Shi JQ, Lee SY (2000) Latent variable models with mixed continuous and polytomous data. J R Stat Soc Ser B 62(1):77–87

    Article  MathSciNet  Google Scholar 

  • Skevington SM, O’Connell MLA (2004) The World Health Organization’s WHOQOL-BREF quality of life assessment: psychometric properties and results of the international field trial - A report from the WHOQOL group. Qual Life Res 13(2):299–310

    Article  Google Scholar 

  • Song XY, Lee SY (2012) Basic and advanced Bayesian structural equation modeling: with applications in the medical and behavioral sciences. Wiley, London

    Book  Google Scholar 

  • Song XY, Lee SY, Ma RW, So WY, Cai JH, Tam C, Lam V, Ying W, Ng MCY, Chan JCN (2009) Phenotype genotype interactions on renal function in type 2 diabetes: an analysis using structural equation modelling. Diabetologia 52(8):1543C1553

  • Sun J (1999) A nonparametric test for current status data with unequal censoring. J R Stat Soc Ser B 61(1):243–250

    Article  MathSciNet  Google Scholar 

  • Sun J (2006) The statistical analysis of interval-censored failure time data. Springer, New York

    MATH  Google Scholar 

  • Wang CJ, Li Q, Song XY, Dong XG (2019) Bayesian adaptive lasso for additive hazard regression with current status data. Stat Med 38(20):3703–3718

    Article  MathSciNet  Google Scholar 

  • Wang X Q, Wu H T, Feng X N, Song X Y. Bayesian two-level model for repeated partially ordered responses: application to adolescent smoking behavior analysis. Sociological Methods and Research, 2019, to appear

  • Zhao S, Hu T, Ma L, Sun J (2015) Regression analysis of informative current status data with the additive hazards model. Lifetime Data Anal 21(2):241–258

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of Chunjie Wang was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11671054). The research of Xinyuan Song was supported by the Research Grant Council of the HKSAR (GRF Grant Nos. 14301918 and 14302519), and the direct grants of Chinese University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjie Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let \(\alpha _0\) and \(\theta _0\) be the true values of \(\alpha \) and \(\theta \), respectively. Recall that \(\varPi (\theta )=B \varPhi B^{T} + \varPsi \). The regularity conditions (C1)–(C4) that are required in the proof of Theorem 1 are as follows:

(C1): The matrix \(\varPi (\theta _0)\) is positive definite; all partial derivatives of the first three orders of \(\varPi (\theta _0)\) with respect to the elements of \(\theta _0\) are continuous and bounded in a neighborhood of \(\theta _0\); and the first derivative of \(\varPi (\theta _0)\), \({\dot{\varPi }}(\theta _0)\), is of full rank in a neighborhood of \(\theta _0\).

(C2): The function \(\lambda _0(t)\) is continuous and integerable on \([0,\tau ]\), where \(\tau \) is a prespecified positive constant, such that \(P(C_{i}\ge \tau ) > 0\).

(C3): There exists a positive constant a such that \(P(C_i\ge \tau , T_i \ge \tau \mid Z_i) > a\) with probability 1, and \(Z_i\), \(i=1,\cdots ,n\) are bounded almost surely.

(C4): The limit of matrix \({{\hat{A}}}\), A, is positive definite. and

$$\begin{aligned} {{\hat{A}}}=-\frac{1}{n}{\frac{{\partial U(\alpha ;{{\hat{\theta }}} )}}{{\partial \alpha }}} \bigg |_{\alpha = {{\hat{\alpha }}} }. \end{aligned}$$

We first define several notations as follows:

$$\begin{aligned}&{{S_Z}( {t,\alpha ,\theta }) = \sum \limits _{i=1}^n {Z_i^*\exp \left( { - {\beta ^T}Z_i^* - {\gamma ^T}\xi _i^*(\theta ) - \frac{1}{2}{\gamma ^T}D(\theta ){t^2}\gamma } \right) }{Y_i}\left( t \right) }, \end{aligned}$$
(A.1)
$$\begin{aligned}&\quad {{S_\xi }( {t,\alpha ,\theta }) = \sum \limits _{i=1}^n {\xi _i^*\exp \left( { - {\beta ^T}Z_i^* - {\gamma ^T}\xi _i^*(\theta ) - \frac{1}{2}{\gamma ^T}D(\theta ){t^2}\gamma } \right) } {Y_i}\left( t \right) }, \end{aligned}$$
(A.2)
$$\begin{aligned}&\quad {{S_0}( {t,\alpha ,\theta }) = \sum \limits _{i=1}^n {\exp \left( { - {\beta ^T}Z_i^* - {\gamma ^T}\xi _i^*(\theta ) - \frac{1}{2}{\gamma ^T}D(\theta ){t^2}\gamma } \right) } {Y_i}\left( t \right) }, \end{aligned}$$
(A.3)
$$\begin{aligned}&\quad S_\xi ^{(2)}\left( {t,\alpha ,\theta } \right) = \sum \limits _{i=1}^n {{Y_i}\left( t \right) \exp \left( { - {\beta ^T}Z_i^* - {\gamma ^T}\xi _i^*(\theta ) -\frac{1}{2}{\gamma ^T}D(\theta ){t^2}\gamma } \right) } \xi _j^{* \otimes 2}(\theta ), \end{aligned}$$
(A.4)
$$\begin{aligned}&\quad {Q}_1(\alpha ,\theta ) = \frac{1}{n}\sum \limits _{i = 1}^n {\int _0^\tau {\frac{{{t^2}}}{2}\left[ {1 + \frac{{{S_Z}\left( {t,\alpha , \theta } \right) }}{{{S_0}\left( {t,\alpha ,\theta } \right) }}} \right] d{H_0}(t)} }, \end{aligned}$$
(A.5)
$$\begin{aligned}&\quad {Q_2}(\alpha ,\theta ) = \frac{1}{n}\sum \limits _{i = 1}^n {\int _0^\tau {\left[ {\frac{{{{S_0}\left( {t,\alpha , \theta } \right) - {S_Z}\left( {t,\alpha ,\theta } \right) }}}{{{S_0}{{\left( {t,\alpha , \theta } \right) }^2}}}} {S^T_\xi }\left( {t,\alpha ,\theta } \right) \right] } d{H_0}(t)}, \end{aligned}$$
(A.6)
$$\begin{aligned}&\quad Q_3(\alpha ,\theta ) = \frac{1}{n}\sum \limits _{i = 1}^n {\int _0^\tau {\left[ {{\xi _i^*} - \frac{{{S_\xi }\left( {t,\alpha ,\theta } \right) }}{{{S_0}\left( {t,\alpha , \theta } \right) }}} \right] d{H_0}(t)} }, \end{aligned}$$
(A.7)
$$\begin{aligned}&\quad {Q_4}(\alpha ,\theta ) = \frac{1}{n}\sum \limits _{i = 1}^n {\int _0^\tau {\left[ S_\xi ^{(2)}( {t,\alpha ,\theta } )- {\frac{{{S^{\otimes 2}_\xi }( {t,\alpha ,\theta } )}}{{{S_0}{{( {t,\alpha ,\theta } )}^2}}}} \right] }d{H_0}(t)}, \end{aligned}$$
(A.8)
$$\begin{aligned}&\quad Q_5(\alpha ,\theta ) = \frac{1}{n}\sum \limits _{i = 1}^n {\int _0^\tau {\left[ {\frac{{{S_\xi } ({t,\alpha , \theta } )}}{{{S_0}( {t,\alpha ,\theta } )}}{\gamma ^T} + 2{I_{q}}} \right] D(\theta ){t^2}\gamma d{H_0}(t)}}, \end{aligned}$$
(A.9)

And \( Q_d={Q}_d( \alpha _0, \theta _0)\) and \({{\hat{Q}}}_d={Q}_d({{\hat{\alpha }}},{{\hat{\theta }}})\), \(d=1, \cdots , 5\).

$$\begin{aligned} K(\theta )= & {} {[{{\dot{\varPi }}} (\theta )\{ \varPi {(\theta )^{ - 1}} \otimes \varPi {(\theta )^{ - 1}}\} {{\dot{\varPi }}} {(\theta )^{ - 1}}]^{ - 1}}{{\dot{\varPi }}} (\theta )\{ \varPi {(\theta )^{ - 1}} \otimes \varPi {(\theta )^{ - 1}}\}, \end{aligned}$$
(A.10)
$$\begin{aligned} {R_i}(\theta )= & {} [{{{{\dot{\varGamma }}} }_1}(\theta )K(\theta )vec\{ V_i^{ \otimes 2} - \varPi (\theta )\} , \ldots ,{{{{\dot{\varGamma }}} }_p}(\theta )K(\theta )vec\{ V_i^{ \otimes 2} - \varPi (\theta )\}], \end{aligned}$$
(A.11)
$$\begin{aligned} {P_i}(\theta )= & {} [{{\dot{D}}_1}(\theta )K(\theta )vec\{ V_i^{ \otimes 2} - \varPi (\theta )\} , \ldots ,{{\dot{D}}_p}(\theta )K(\theta )vec\{ V_i^{ \otimes 2} - \varPi (\theta )\}],\nonumber \\ \end{aligned}$$
(A.12)

where \(\otimes \) denotes the Kronecker product of two matrices, vec denotes the operation that converts a matrix into a column vector by stacking the rows sequentially, \({\dot{\varPi }} (\theta )= \partial {(vec\varPi (\theta ))^T}/\partial \theta ,\) \({\dot{\varGamma }}_j({\theta })\ (j=1,...,p)\) denote the derivatives of the jth column of \(\varGamma (\theta )\) with respect to \(\theta ^T\), and \({\dot{D}}_r({\theta }) \ (r=1,...,q)\) denote the derivatives of the rth column of \({D}({\theta })\) with respect to \(\theta ^T\).

Let \( {{{\hat{U}}}_i} = { ({{\hat{U}}}_{i1}^T, {{\hat{U}}}_{i2}^T)^T}\), \({{\hat{\varSigma }}}=\frac{1}{n}\sum \limits _{i = 1}^n {{\hat{U}}}_i^{ \otimes 2}\) and

In the above, \(d{{{\hat{M}}}^c_i}(t) = dN_i^c(t) - {Y_i}(t)\exp \big \{- {{\hat{\beta }}} ^TZ_i^*(t) - {{\hat{\gamma }}}^T \varGamma ({{\hat{\theta }}}){V_i}t \big \}d{{{\hat{H}}}_0}(t)\) and \({{{\hat{H}}}_0}(t) = \sum \limits _{i = 1}^n \int _0^t \frac{{dN_i^c(s)}}{{\sum \nolimits _{j = 1}^n {{Y_j}(s)\exp ( - {{\hat{\beta }}}^TZ_j^*(t) - {{\hat{\gamma }}} ^T \varGamma ({{\hat{\theta }}}){V_j}t- \frac{1}{2}{{{\hat{\gamma }}} ^T}D({{\hat{\theta }}} ){t^2} {{\hat{\gamma }}})} }}\).

Now, we are ready to prove the consistency and asymptotic normality of \({{\hat{\alpha }}}\). For the consistency, it is easy to obtain from the following two facts. One is that parameter \({{\hat{\theta }}}\) and its functions \(\varGamma ({{\hat{\theta }}})=({{\hat{B}}}^{T}{{\hat{\varPsi }}}^{-1}{{\hat{B}}})^{-1}{{\hat{B}}}^{T}{{\hat{\varPsi }}}^{-1}\) and \(D({{\hat{\theta }}})=({{\hat{B}}}^T {{\hat{\varPsi }}}^{-1}{{\hat{B}}})^{-1}\) involved in the CFA model are consistent. The consistency of \({{\hat{\theta }}}\) has been well established in the literature (e.g., Amemiya, Fuller and Pantula, 1987; Anderson and Amemiya 1988; Lee 2007). The consistency of \(\varGamma ({{\hat{\theta }}})\) and \(D({{\hat{\theta }}})\) can be obtained in a similar manner as in Pan et al. (2015). The second fact is that the working corrected estimating equations \(U_1(\alpha ; {\hat{\theta }}) = 0\) and \(U_2(\alpha ; {\hat{\theta }}) = 0\) can be written as the summation of n independently and identically distributed mean zero random variables plus some negligible errors.

Hence, based on the lemma of Pan et al. (2015), we have

$$\begin{aligned}&{{\hat{\theta }}} - {\theta _0} = K({\theta _0})vec\{ {S^*} - \varPi ({\theta _0})\} + o_p({1 /{\sqrt{n} }}) , \end{aligned}$$
(A.13)
$$\begin{aligned}&\quad \varGamma ({{\hat{\theta }}} ) - \varGamma ({\theta _0}) = \frac{1}{n}\sum \limits _{i = 1}^n {{R_i}({\theta _0})} + o_p({1 / {\sqrt{n} }}) , \end{aligned}$$
(A.14)
$$\begin{aligned}&\quad D({{\hat{\theta }}} ) - D({\theta _0}) = \frac{1}{n}\sum \limits _{i = 1}^n {{P_i}({\theta _0})} + o_p({1 / {\sqrt{n} }}) , \end{aligned}$$
(A.15)

where \(K(\theta )\), \(R_i(\theta )\), and \(P_i(\theta )\) are defined by (A.10), (A.11), and (A.12), respectively.

Under the AH model (2), we redefine a zero-mean stochastic process as follows: for \(i = 1, \ldots ,n\),

$$\begin{aligned} d{M^c_i}(t) = dN_i^c(t) - {Y_i}(t)\exp \big \{- \beta _0^TZ_i^*(t) - \gamma _0^T\varGamma (\theta _0 ){V_i}t \big \}d{H_0}(t). \end{aligned}$$

Denote \({{\bar{Z}}}(t,\alpha _0,\theta _0)={{\bar{Z}}}(t)\). We can obtain the following:

$$\begin{aligned} {U_1}({\alpha _0};{\theta _0})&= \sum \limits _{i = 1}^n {\int _0^\tau {\{ Z_i^*(t) - {{\bar{Z}}}(t)\} } d{M^c_i}(t)} \\&= \sum \limits _{i = 1}^n {\int _0^\tau {\{ Z_i^*(t) - {e_Z}(t)\} } d{M^c_i}(t)} + o_p({n^{{1 / 2}}}),\\ {U_2}({\alpha _0};{\theta _0})&= \sum \limits _{i = 1}^n {\int _0^\tau {\{ {{{{\hat{\xi }}} }_i}({\theta _0})t - {{{{\bar{\xi }}} }_i}(t;{\theta _0})\} d{M^c_i}(t)} } + \sum \limits _{i = 1}^n {\int _0^\tau {D({\theta _0}){\gamma _0}{t^2}dN_{i}^{c}(t)}} \\&= \sum \limits _{i = 1}^n {\int _0^\tau {\{ \varGamma ({\theta _0}){V_i}t - {e_\xi }(t)\} d{M^c_i}(t)}} + \sum \limits _{i = 1}^n {\int _0^\tau {D({\theta _0}){\gamma _0}{t^2}dN_{i}^{c}(t)}} + o_p({n^{{1 /2}}}), \end{aligned}$$

where

$$\begin{aligned} {e_Z}(t)={\frac{ES_Z( {t,\alpha _0,\theta _0})}{ES_0( {t,\alpha _0,\theta _0})}}, ~~\text{ and }~~ {e_\xi }(t) = \frac{{E{S_\xi }(t,\alpha _0,\theta _0)}}{{E{S_0}(t,\alpha _0 ,\theta _0)}}. \end{aligned}$$

By the Taylor expansion, we have

$$\begin{aligned}&{U_1}({\alpha _0},{{\hat{\theta }}} ) - {U_1}({\alpha _0},{\theta _0}) \nonumber \\&\quad = - n{{{{\hat{Q}}}}_1}{\gamma _0 ^T}\left[ {D({{\hat{\theta }}} ) - D({\theta _0})} \right] \gamma _0 + n{{{{\hat{Q}}}}_2}{\left[ {\varGamma ({{\hat{\theta }}} ) - \varGamma ({\theta _0})} \right] ^T}\gamma _0 + o_p({n^{{1 / 2}}})\nonumber \\ \end{aligned}$$
(A.16)

and

$$\begin{aligned}&{U_2}({\alpha _0},{{\hat{\theta }}} ) - {U_2}({\alpha _0},{\theta _0})\nonumber \\&\quad = - n{{{{\hat{Q}}}}_4}{\left[ {\varGamma ({{\hat{\theta }}} ) - \varGamma ({\theta _0})} \right] ^T}\gamma _0 + n\left[ {\varGamma ({{\hat{\theta }}} ) - \varGamma ({\theta _0})} \right] {{{{\hat{Q}}}}_3}+ n{{{{\hat{Q}}}}_5}\left[ {D({{\hat{\theta }}} ) - D({\theta _0})} \right] \gamma _0 + o_p({n^{{1 / 2}}}).\nonumber \\ \end{aligned}$$
(A.17)

Based on (A.14) and (A.15), equation (A.16) can be rewritten as

$$\begin{aligned}&{U_1}({\alpha _0},{{\hat{\theta }}} ) - {U_1}({\alpha _0},{\theta _0}) \nonumber \\&\quad = - {Q_1}\sum \limits _{i = 1}^n {{\gamma _0 ^T}\left[ {{P_i}( \theta _0 )} \right] \gamma _0 } + {Q_2}\sum \limits _{i = 1}^n {{{\left[ {{R_i}( \theta _0 )} \right] }^T}\gamma _0 } + o_p({n^{{1 / 2}}}). \end{aligned}$$
(A.18)

Similarly, equation (A.17) can be rewritten as

$$\begin{aligned}&{U_2}({\alpha _0},{{\hat{\theta }}} ) - {U_2}({\alpha _0},{\theta _0})= - {Q_4}\sum \limits _{i = 1}^n {{{\left[ {{R_i}(\theta _0 )} \right] }^T}\gamma _0 } + \sum \limits _{i = 1}^n {\left[ {{R_i}(\theta _0 )} \right] {Q_3}} \nonumber \\&\quad {} + {Q_5}\sum \limits _{i = 1}^n {\left[ {{P_i}( \theta _0 )} \right] \gamma _0 } + o_p({n^{{1 / 2}}}). \end{aligned}$$
(A.19)

Thus, we obtain

$$\begin{aligned}&{U_1}({\alpha _0},{{\hat{\theta }}} ) = {U_1}({\alpha _0},{\theta _0}) + \mathrm{{\{ }}{U_1}({\alpha _0},{{\hat{\theta }}} ) - {U_1}({\alpha _0},{\theta _0})\mathrm{{\} }}\nonumber \\&\quad {} = \sum \limits _{i = 1}^n {{U_{i1}}} + o_p({n^{{1 / 2}}}), \end{aligned}$$
(A.20)

and

$$\begin{aligned}&{U_2}({\alpha _0},{{\hat{\theta }}} ) = {U_2}({\alpha _0},{\theta _0}) + \mathrm{{\{ }}{U_2}({\alpha _0},{{\hat{\theta }}} ) - {U_2}({\alpha _0},{\theta _0})\mathrm{{\} }}\nonumber \\&\quad {} = \sum \limits _{i = 1}^n {{U_{i2}}} + o_p({n^{{1 / 2}}}), \end{aligned}$$
(A.21)

where

$$\begin{aligned} {U_{i1}} = \int _0^\tau {(Z_i^* - {e_Z})d{M^c_i}(t)} - {Q_1}{\gamma _0 ^T}\left[ {{P_i}(\theta _0 )} \right] \gamma _0 + {Q_2}{\left[ {{R_i}( \theta _0 )} \right] ^T}\gamma _0 , \end{aligned}$$

and

$$\begin{aligned} {U_{i2}}= & {} \int _0^\tau {(\varGamma ({\theta _0}){V_i}t - {e_\xi })d{M^c_i}(t)} + \int _0^\tau {D(\theta _0 ) \gamma _0 {t^2}dN_i^c(t)} - {} {Q_4}{\left[ {{R_i}(\theta _0 )} \right] ^T}\gamma _0 \\&+ \left[ {{R_i}(\theta _0 )} \right] {Q_3} + {Q_5}\left[ {{P_i}(\theta _0 )} \right] \gamma _0 . \end{aligned}$$

Let \({U_i} = {(U_{i1}^T,U_{i2}^T)^T}\). Then, it follows from (A.20) and (A.21) that

$$\begin{aligned} U({\alpha _0};{{\hat{\theta }}} ) = \sum \limits _{i = 1}^n {{U_i}} + o_p({n^{{1 / 2}}}) , \end{aligned}$$
(A.22)

which is a sum of independently and identically distributed zero-mean random vectors plus an asymptotically negligible term. The law of large numbers and the multivariate central limit theorem show that \(\frac{1}{n}U({\alpha _0};{{\hat{\theta }}} ) \rightarrow 0\) in probability and \(\frac{1}{{\sqrt{n} }}U({\alpha _0};{{\hat{\theta }}} )\) converges in distribution to a normal random vector with mean zero and covariance matrix \(\varSigma = E(U_i^{ \otimes 2})\). Note that

$$\begin{aligned} {{\hat{\alpha }}} - {\alpha _0} = {n^{ - 1}}{{{{\hat{A}}}}^{ - 1}}U({\alpha _0};{{\hat{\theta }}} ) +o_p({n^{{-1 / 2}}}) , \end{aligned}$$
(A.23)

and \({{\hat{A}}} \rightarrow A\) in probability by the consistency of \(\varGamma ({{\hat{\theta }}})\) and \(D({{\hat{\theta }}})\). Then, based on (A.23), \({{\hat{\alpha }}}\) converges in probability to \(\alpha _0\), and \(\sqrt{n}({{\hat{\alpha }}}- \alpha _0)\) is asymptotically normal with mean zero and covariance matrix \({A^{ - 1}}\varSigma {A^{ - T}}\), and \(A^{-1}\varSigma {A^{-T}}\) can be consistently estimated by \({{{{\hat{A}}}}^{ - 1}}{{\hat{\varSigma }}} {{{{\hat{A}}}}^{ - T}}.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhao, B., Luo, L. et al. Regression analysis of current status data with latent variables. Lifetime Data Anal 27, 413–436 (2021). https://doi.org/10.1007/s10985-021-09521-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-021-09521-9

Keywords

Navigation