Skip to main content
Log in

Nonparametric and semiparametric estimators of restricted mean survival time under length-biased sampling

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Restricted mean survival time is often of direct interest in epidemiologic studies involving censored survival time. In this article, we propose the nonparametric and semiparametric estimators of the mean restricted to the preassigned interval with censored length-biased data. Based on the peculiarity of length-biased data, the auxiliary information that truncation time and residual time have the same distribution is taken into account for improving estimation efficiency. For two-sample comparison, we construct two tests which are easy to implement. We also derive the asymptotic properties for the proposed estimators and test statistics. In simulation studies, some simulations are conducted to compare the performances of several approaches to estimate restricted mean and to assess the test statistics. In addition, our methods are applied to a real data example and some interesting results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Addona V, Wolfson DB (2006) A formal test for the stationarity of the incidence rate using data from a prevalent cohort study with follow-up. Lifetime Data Anal 12(3):267–284

    Article  MathSciNet  Google Scholar 

  • Andersen PK, Borgan O, Gill RD, Keiding N (2012) Statistical models based on counting processes. Springer, Berlin

    MATH  Google Scholar 

  • Arnold BC, Strauss D (1988) Bivariate distributions with exponential conditionals. J Am Stat Assoc 83(402):522–527

    Article  MathSciNet  Google Scholar 

  • Asgharian M, Wolfson DB (2005) Asymptotic behavior of the unconditional npmle of the length-biased survivor function from right censored prevalent cohort data. Ann Stat 33(5):2109–2131

    Article  MathSciNet  Google Scholar 

  • Cox DR (1972) Regression models and life-tables. J R Stat Soc Ser B (Methodol) 34(2):187–202

    MathSciNet  MATH  Google Scholar 

  • Huang CY, Qin J (2011) Nonparametric estimation for length-biased and right-censored data. Biometrika 98(1):177–186

    Article  MathSciNet  Google Scholar 

  • Huang CY, Qin J (2012) Composite partial likelihood estimation under length-biased sampling, with application to a prevalent cohort study of dementia. J Am Stat Assoc 107(499):946–957

    Article  MathSciNet  Google Scholar 

  • Karrison T (1987) Restricted mean life with adjustment for covariates. J Am Stat Assoc 82(400):1169–1176

    Article  MathSciNet  Google Scholar 

  • Lancaster T (1990) The econometric analysis of transition data, vol 17. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lee CH, Ning J, Shen Y (2018) Analysis of restricted mean survival time for length-biased data. Biometrics 74(2):575–583

    Article  MathSciNet  Google Scholar 

  • Lin CJ, Zhou Y (2014) Inference for the treatment effects in two sample problems with right-censored and length-biased data. Stat Probab Lett 90:17–24

    Article  MathSciNet  Google Scholar 

  • Qin J, Shen Y (2010) Statistical methods for analyzing right-censored length-biased data under cox model. Biometrics 66(2):382–392

    Article  MathSciNet  Google Scholar 

  • Qin J, Ning J, Liu H, Shen Y (2011) Maximum likelihood estimations and em algorithms with length-biased data. J Am Stat Assoc 106(496):1434–1449

    Article  MathSciNet  Google Scholar 

  • Redelmeier DA, Singh SM (2001) Survival in academy award-winning actors and actresses. Ann Intern Med 134(10):955–962

    Article  Google Scholar 

  • Sylvestre MP, Huszti E, Hanley JA (2006) Do oscar winners live longer than less successful peers? A reanalysis of the evidence. Ann Intern Med 145(5):361–363

    Article  Google Scholar 

  • Tsai WY (2009) Pseudo-partial likelihood for proportional hazards models with biased-sampling data. Biometrika 96(3):601–615

    Article  MathSciNet  Google Scholar 

  • Van Der Vaart AW, Wellner JA (1996) Weak convergence. In: Van Der Vaart AW, Wellner JA (eds) Weak convergence and empirical processes. Springer, New York, pp 16–28

    Chapter  Google Scholar 

  • Vardi Y (1989) Multiplicative censoring, renewal processes, deconvolution and decreasing density: nonparametric estimation. Biometrika 76(4):751–761

    Article  MathSciNet  Google Scholar 

  • Wang MC (1991) Nonparametric estimation from cross-sectional survival data. J Am Stat Assoc 86(413):130–143

    Article  MathSciNet  Google Scholar 

  • Wang MC (1996) Hazards regression analysis for length-biased data. Biometrika 83(2):343–354

    Article  MathSciNet  Google Scholar 

  • Wang MC, Brookmeyer R, Jewell NP (1993) Statistical models for prevalent cohort data. Biometrics 49:1–11

    Article  MathSciNet  Google Scholar 

  • Wang YX, Zhou Z, Zhou XH, Zhou Y (2017) Nonparametric and semiparametric estimation of quantile residual lifetime for length-biased and right-censored data. Can J Stat 45(2):220–250

    Article  MathSciNet  Google Scholar 

  • Wolkewitz M, Allignol A, Schumacher M, Beyersmann J (2010) Two pitfalls in survival analyses of time-dependent exposure: a case study in a cohort of oscar nominees. Am Stat 64(3):205–211

    Article  MathSciNet  Google Scholar 

  • Woodroofe M (1985) Estimating a distribution function with truncated data. Ann Stat 13(1):163–177

    Article  MathSciNet  Google Scholar 

  • Zhang M, Schaubel DE (2011) Estimating differences in restricted mean lifetime using observational data subject to dependent censoring. Biometrics 67(3):740–749

    Article  MathSciNet  Google Scholar 

  • Zhang M, Schaubel DE (2012) Double-robust semiparametric estimator for differences in restricted mean lifetimes in observational studies. Biometrics 68(4):999–1009

    Article  MathSciNet  Google Scholar 

  • Zucker DM (1998) Restricted mean life with covariates: modification and extension of a useful survival analysis method. J Am Stat Assoc 93(442):702–709

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Zhou’s work was supported by the State Key Program of National Natural Science Foundation of China (71931004) and the State Key Program in the Major Research Plan of National Natural Science Foundation of China (91546202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For simplicity, let \(N_{i}(t)=\varDelta _{i}I(Y_{i}\le t)\), \(R_{i}(t)=\frac{1}{2}\{I(A_{i}\le t \le Y_{i})+\varDelta _{i}I({\tilde{V}}_{i}\le t\le Y_{i}) \}\). K(t) denotes \(\frac{1}{2}E\{I(A\le t \le Y)+\varDelta I({\tilde{V}}\le t \le Y)\}\). W(t) denotes \(E\{\varDelta I(Y\le t)\}\). We impose the following regularity conditions:

  1. (a)

    J(t) and S(t) are absolutely continuous on \([0,\tau ^{*}]\), where \(\tau ^{*}=\sup \{t:P(Y\ge t)>0\}\);

  2. (b)

    \(\int _{0}^{\tau ^{*}}\frac{d W(u)}{K^{2}(u)}<\infty \) and \(E\frac{1}{K^{2}(Y)}<\infty \);

  3. (c)

    The true regression parameter \(\beta _{0}\) lies in a compact set \({\mathcal {B}}\), and X is bounded;

  4. (d)

    \(\varLambda _{0}(t)\) is absolutely continuous on\([0,\tau ^{*}]\), and \(\varLambda (\tau ^{*})<\infty \).

Lemma 1

Under the regularity assumptions (a) and (b) given above, when \(n\rightarrow \infty \), the random process \(n^{\frac{1}{2}}\{{\hat{\varLambda }}(t)-\varLambda (t)\}\) for \(0<t<\tau ^{*}\) converges to a zero-mean Gaussian process with the variance–covariance function \(\sigma _{\varLambda }(t_{1},t_{2})=E\{\phi _{1}(t_{1})\phi _{2}(t_{2})\}\).

Proof of Lemma 1

Let

$$\begin{aligned} K(t)= & {} \frac{1}{2}E\{I(A\le t \le Y)+\varDelta I({\tilde{V}}\le t \le Y)\},\\ W(t)= & {} E\{\varDelta I(Y\le t)\}. \end{aligned}$$

Their corresponding empirical processes are

$$\begin{aligned} K_{n}(t)= & {} \frac{1}{2n}\sum _{i=1}^{n}\{I(A_{i}\le t \le Y_{i})+\varDelta _{i}I({\tilde{V}}_{i}\le t \le Y_{i} )\},\\ W_{n}(t)= & {} \frac{1}{n}\sum _{i=1}^{n}\varDelta _{i}I(Y_{i}\le t). \end{aligned}$$

By the proof of Lemma 1 in Wang et al. (2017), the cumulative hazard function of \({\tilde{T}}\) can be derived as

$$\begin{aligned} \varLambda (t)=\int _{0}^{t}\frac{dW(u)}{K(u)}, \end{aligned}$$

and its estimator \({\hat{\varLambda }}(t)\) can be expressed as

$$\begin{aligned} {\hat{\varLambda }}(t)=\int _{0}^{t}\frac{dW_{n}(u)}{K_{n}(u)}. \end{aligned}$$

Note that \(n^{1/2}\{W_{n}(t)-W(t)\}\) and \(n^{1/2}\{K_{n}(t)-K(t)\}\) are sums of independent, identically distributed processes with mean 0. We can use empirical process theory to prove the weak convergence of them. Since \(\frac{1}{2}\{I(A \le t \le Y )+\varDelta I({\tilde{V}}\le t \le Y)\}\) and \(\varDelta I(Y\le t)\) belong to Donsker class by the Example 2.6.1 in Van Der Vaart and Wellner (1996), we can conclude the weak convergence of \(n^{1/2}\{W_{n}(t)-W(t)\}\) and \(n^{1/2}\{K_{n}(t)-K(t)\}\).

Applying the functional delta method (Andersen et al. 2012), we can derive the following asymptotic representation:

$$\begin{aligned}&\sqrt{n}\{{\hat{\varLambda }}(t)-\varLambda (t)\}\\&\quad =\sqrt{n}\int _{0}^{t}\frac{K(u)dW_{n}(u)-K_{n}(u)dW(u)}{K^{2}(u)}+o_{p}(1)\\&\quad =n^{-\frac{1}{2}}\sum _{i=1}^{n}\int _{0}^{t}\frac{dN_{i}(u)}{K(u)}-\int _{0}^{t}\frac{1}{2K^{2}(u)}\{I(A_{i}\le u \le Y_{i})\\&\qquad +\varDelta _{i}I({\tilde{V}}_{i}\le u \le Y_{i})\}d W(u)+o_{p}(1)\\&\quad =n^{-\frac{1}{2}}\sum _{i=1}^{n}\phi _{i}(t)+o_{p}(1) \end{aligned}$$

uniformly \(t\in [0,\tau ^{*}]\), where

$$\begin{aligned} \phi _{i}(t)=\int _{0}^{t}\frac{dN_{i}(u)}{K(u)}-\int _{0}^{t}\frac{1}{2K^{2}(u)}\{I(A_{i}\le u \le Y_{i})+\varDelta _{i}I({\tilde{V}}_{i}\le u \le Y_{i})\}d W(u). \end{aligned}$$

\(\{\int _{0}^{t}\frac{dN_{i}(u)}{K(u)}, t\in [0,\tau ^*]\}\) are monotone (increase with t) and its envelope function is square integrable by condition (b), thus it belongs to Donsker class with theorem 2.7.5 in Van Der Vaart and Wellner (1996). Similarly, \(\{\int _{0}^{t}\frac{1}{2K^{2}(u)}\{I(A_{i}\le u \le Y_{i})+\varDelta _{i}I({\tilde{V}}_{i}\le u \le Y_{i})\}d W(u), t\in [0,\tau ^*]\}\) is a monotone function and bounded with \(\int _{0}^{\tau ^{*}}\frac{d W(u)}{K^{2}(u)}\) , thus it is also a Donsker class. Combined with the Lemma 2.6.18 of Van Der Vaart and Wellner (1996), we can prove that \(n^{\frac{1}{2}}\{{\hat{\varLambda }}(t)-\varLambda (t)\}\) converges to a zero-mean Gaussian process uniformly in \((0,\tau ^{*}]\). \(\square \)

The variance–covariance function of the limiting distribution, \(\sigma _{\varLambda }(t_{1},t_{2})\), can be consistently estimated by \({\hat{\sigma }}_{\varLambda }(t_{1},t_{2})=n^{-1}\sum _{i=1}^{n}{\hat{\phi }}_{i}(t_{1}){\hat{\phi }}_{i}(t_{2})\), where

$$\begin{aligned} {\hat{\phi }}_{i}(t)=\int _{0}^{t}\frac{dN_{i}(u)}{K_{n}(u)}-\int _{0}^{t}\frac{1}{2K_{n}^{2}(u)}\{I(A_{i}\le u \le Y_{i})+\varDelta _{i}I({\tilde{V}}_{i}\le u \le Y_{i})\}d W_{n}(u). \end{aligned}$$

Lemma 2

Under the regularity assumptions (a) and (b), \(\sup \limits _{0<t\le \tau ^{*}} |{\hat{\varLambda }}(t)-\varLambda (t)|\) converges to 0 in probability, when \(n\rightarrow \infty \).

Proof of Lemma 2

Since every Donsker class is a Glivenko-Cantelli class with an application of Slutsky’s lemma, we can prove Lemma 2 easily with the result of Lemma 1. \(\square \)

Proof of Theorem 1

Considering estimation of \(\mu _{\tau }\), \(\sqrt{n}({\hat{\mu }}_{\tau }-\mu _{\tau })\) can be written as

$$\begin{aligned} \sqrt{n}({\hat{\mu }}_{\tau }-\mu _{\tau })= & {} \sqrt{n}\int _{0}^{\tau }{\hat{S}}(u)-S(u)du\\= & {} \sqrt{n}\int _{0}^{\tau }e^{-{\hat{\varLambda }}(u)}-e^{-\varLambda (u)}du\\= & {} -\sqrt{n}\int _{0}^{\tau }S(u)({\hat{\varLambda }}(u)-\varLambda (u))du+o_{p}(1)\\= & {} n^{-\frac{1}{2}}\sum _{i=1}^{n}\eta _{i}(\tau )+o_{p}(1), \end{aligned}$$

uniformly \(\tau \in [0,\tau ^{*}]\), where \(\eta _{i}(\tau )=-\int _{0}^{\tau }S(u)\phi _{i}(u)du\).

Combined with Lemmas 1 and 2, the weak convergence of \(\sqrt{n}({\hat{\mu }}_{\tau }-\mu _{\tau })\) can be proved with continuous mapping theorem. Since the \(\eta _{i}\) variates are independent and identically distributed with mean 0, applying the law of large numbers, \({\hat{\mu }}_{\tau }\) converges to \(\mu _{\tau }\) in probability. \(n^{1/2}({\hat{\mu }}_{\tau }-\mu _{\tau })\) converges weakly to Gaussian process with mean 0 and covariance \(E(\eta _{i}(s)\eta _i(t))\) for \(s,t\in (0,\tau ^*)\).

By this theorem, we easily derive that \(n^{1/2}({\hat{\mu }}_{\tau }-\mu _{\tau })\) converges to a normal distribution with mean 0 and variance \(E(\eta _i(\tau )^2)\) for \(\tau \in (0,\tau ^*)\). \(\square \)

The variance of the limiting distribution, \(E(\eta _{i}^{2})\), can be consistently estimated by \(n^{-1}\sum _{i=1}^{n}{\hat{\eta }}_{i}^{2}\), where \({\hat{\eta }}_{i}=-\int _{0}^{\tau }{\hat{S}}(u){\hat{\phi }}_{i}(u)du\).

We now provide a set of results pertinent to the asymptotic properties list in Sect. 3.2 for semiparametric model. The assumed model for unbiased death time hazard is given by

$$\begin{aligned} \lambda (t|X)=\lambda _{0}(t)\exp (\beta _{0}^{T}X). \end{aligned}$$

Correspondingly, the cumulative hazard satisfies

$$\begin{aligned} \varLambda (t|X)=\varLambda _{0}(t)\exp (\beta _{0}^{T}X). \end{aligned}$$

We abbreviate \(\varLambda (t|X)\) as \(\varLambda _{X}(t)\) and its estimator is \({\hat{\varLambda }}_{X}(t)\). The subscript X is used for differentiating semiparametric model given covariates from nonparametric model.

Lemma 3

Under the regularity assumptions (a) (b) (c) and (d) given above, when \(n\rightarrow \infty \), for \(0<t<\tau ^{*}\), the random process \({\hat{\varLambda }}_{X}(t)-\varLambda _{X}(t)\) converges to a zero-mean Gaussian process with variance–covariance function \(\sigma _{\varLambda _{X}}(t_{1},t_{2})=E\{\psi _{1}(t_{1})\psi _{1}(t_{2})\}\).

Proof of Lemma 3

Firstly, we make the following decomposition:

$$\begin{aligned} \sqrt{n}\{{\hat{\varLambda }}_{X}(t)-\varLambda _{X}(t)\}=\sqrt{n}\{{\hat{\varLambda }}_{X}(t,{\hat{\beta }})-{\hat{\varLambda }}_{X}(t,\beta _{0})\} +\sqrt{n}\{{\hat{\varLambda }}_{X}(t,\beta _{0})-\varLambda _{X}(t)\} \end{aligned}$$

Through a Taylor series expansion of \({\hat{\varLambda }}_{X}(t,{\hat{\beta }})\) around \(\beta _{0}\), it is straightforward to show that the first item can be derived as

$$\begin{aligned}&\sqrt{n}\{{\hat{\varLambda }}_{X}(t,{\hat{\beta }})-{\hat{\varLambda }}_{X}(t,\beta _{0})\}\nonumber \\&\quad =\int _{0}^{t}\left\{ X-\frac{{\mathcal {S}}^{(1)}(u,\beta _{0})}{{\mathcal {S}}^{(0)}(u,\beta _{0})}\right\} ^{\text {T}}\text {d}\varLambda _{X}(u,\beta _{0}) \sqrt{n}({\hat{\beta }}-\beta _{0})+o_{P}(1), \end{aligned}$$

where \({\mathcal {S}}^{k}(t,\beta )=\frac{1}{n}\sum _{i=1}^{n}X_{i}^{\bigotimes k}\exp (\beta 'X_{i})R_{i}(t)\). And \({\mathcal {S}}^{k}(t,\beta )\) converges to its expectation \(s^{k}(t,\beta )\) in probability.

\(U(\beta )\) can be reexpressed as

$$\begin{aligned} U(\beta )=\frac{1}{n}\sum _{i=1}^{n}\int _{0}^{\tau ^{*}}\{X_{i}-\frac{S^{(1)}(u,\beta )}{S^{(0)}(u,\beta )}\}dN_{i}(u). \end{aligned}$$

Under the regularity condition (c) and (d), it shows from Huang and Qin (2012) that \(\sup _{\beta \in {\mathcal {B}}}|U(\beta )-{\tilde{U}}(\beta )|\rightarrow 0\) almost surely as \(n\rightarrow \infty \), with

$$\begin{aligned} {\tilde{U}}(\beta )=E\{X_{1}N_{1}(\tau ^{*})\}-\int _{0}^{\tau ^{*}}\frac{s^{(1)}(u,\beta )}{s^{(0)}(u,\beta )}dW(u). \end{aligned}$$

Define \(\varGamma (\beta )=dU(\beta )/d\beta \) and \({\tilde{\varGamma }}(\beta )=d{\tilde{U}}/d\beta \), that is,

$$\begin{aligned} \varGamma (\beta )=\int _{0}^{\tau ^{*}}[-\frac{S^{(2)}(u,\beta )}{S^{(0)}(u,\beta )}+\{\frac{S^{(1)}(u,\beta )}{S^{(0)}(u,\beta )}\}^{\otimes 2}]\{ \frac{1}{n}\sum _{i=1}^{n}dN_{i}(u)\} \end{aligned}$$

and

$$\begin{aligned} {\tilde{\varGamma }}(\beta )=\int _{0}^{\tau ^{*}}[-\frac{s^{(2)}(u,\beta )}{s^{(0)}(u,\beta )}+\{\frac{s^{(1)}(u,\beta )}{s^{(0)}(u,\beta )}\}^{\otimes 2}]dW(u). \end{aligned}$$

Applying the Taylor series expansion, it can be derived as \({\hat{\beta }}-\beta _{0}=\varGamma ^{-1}(\beta ^{*}) (U({\hat{\beta }})-U(\beta _{0}))\), where \(\beta ^{*}\) lies between \({\hat{\beta }}\) and \(\beta _{0}\). According to Huang and Qin (2012), \({\hat{\beta }}\) converges in probability to \(\beta _{0}\) and \(\sup _{\beta \in {\mathcal {B}}}|\varGamma (\beta )-{\tilde{\varGamma }}(\beta )|\rightarrow 0\). Thus, \({\hat{\beta }}-\beta _{0}=-{\tilde{\varGamma }}^{-1}(\beta _{0})U(\beta _{0}).\)

Define \(M_{i}(t,\beta )=N_{i}(t)-\int _{0}^{t}\exp (\beta 'X_{i})R_{i}(u)d\varLambda _{0}(u)\) and applying the functional delta method (Andersen et al. 2012), \(U(\beta )\) can be derived as \(n^{-1}\sum _{i=1}^{n}\xi _{i}(\beta )+o_{p}(n^{-1/2})\) uniformly on \(t\in [0,\tau ^*]\), with

$$\begin{aligned} \xi _{i}(\beta )=\int _{0}^{\tau ^{*}}\{X_{i}-\frac{s^{(1)}(u,\beta )}{s^{(0)}(u,\beta )} \}dM_{i}(u,\beta ). \end{aligned}$$

Then, the second item can be derived as

$$\begin{aligned} \sqrt{n}\{{\hat{\varLambda }}_{X}(t,\beta _{0})-\varLambda _{X}(t)\}&=\exp (\beta _{0}'X)n^{-\frac{1}{2}}\sum _{i=1}^{n}\int _{0}^{t}\frac{\text {d}M_{i}(u,\beta _{0})}{{\mathcal {S}}^{(0)}(u,\beta _{0})}\\&=\exp (\beta _{0}'X)n^{-\frac{1}{2}}\sum _{i=1}^{n}\int _{0}^{t}\frac{\text {d}M_{i}(u,\beta _{0})}{s^{(0)}(u,\beta _{0})}+o_{p}(1) \end{aligned}$$

Finally, it is easy to show that

$$\begin{aligned} {\hat{\varLambda }}_{X}(t)-\varLambda _{X}(t)=n^{-\frac{1}{2}}\sum _{i=1}^{n}\psi _{i}(t)+o_{P}(1), \end{aligned}$$

where

$$\begin{aligned} \psi _{i}(t)= & {} -\int _{0}^{t}\{X-\frac{s^{(1)}(u,\beta _{0})}{s^{(0)}(u,\beta _{0})}\}^{\text {T}}\text {d}\varLambda _{X}(u,\beta _{0}) {\tilde{\varGamma }}^{-1}(\beta _{0})\xi _{i}(\beta _{0})\\&+\exp (\beta _{0}'X)\int _{0}^{t}\frac{\text {d}M_{i}(u,\beta _{0})}{s^{0}(u,\beta _{0})}. \end{aligned}$$

Write

$$\begin{aligned} \kappa _{i}(t)=-\int _{0}^{t}\{X-\frac{s^{(1)}(u,\beta _{0})}{s^{(0)}(u,\beta _{0})}\}^{\text {T}}\text {d}\varLambda _{X}(u,\beta _{0}) {\tilde{\varGamma }}^{-1}(\beta _{0})\xi _{i}(\beta _{0}). \end{aligned}$$

Since \(\kappa _{i}(t)\) is a monotone function increasing with t and \(E\kappa _{i}(t)=0 \), the weak convergence of \(n^{-1/2}\sum _{i=1}^{n}\kappa _{i}(t)\) on \((0,\tau ^{*}]\) can be easily shown by using theorem 2.7.5 in Van Der Vaart and Wellner (1996).

Similarly, by the Lemma 2.6.18 of Van Der Vaart and Wellner (1996), \(\{\exp (\beta _{0}'X)\int _{0}^{t}\frac{\text {d}M_{i}(u,\beta _{0})}{s^{0}(u,\beta _{0})}, t\in [0, \tau ^{*}], \beta \in {\mathcal {B}}\}\) is a Donsker class, Lemma 3 is easily proved. \(\square \)

Lemma 4

Under the regularity assumptions (a) (b) (c) and (d), \(\sup \limits _{0<t\le \tau ^{*}} |{\hat{\varLambda }}_{X}(t)-\varLambda _{X}(t)|\) converges to 0 in probability, when \(n\rightarrow \infty \).

Proof of Lemma 4

Since every Donsker class is a Glivenko-Cantelli class, we can prove Lemma 4 easily with the result of Lemma 3. \(\square \)

Proof of Theorem  2

Let \(S_{X}(t)\) denote the true survival function of \({\tilde{T}}\), conditional on the covariates. Its corresponding estimator proposed in our article is \({\hat{S}}_{X}(t)\). According to the proof of Theorem 1, similarly, \(\sqrt{n}({\hat{\mu }}_{\tau |X}-\mu _{\tau |X})\) can be written as

$$\begin{aligned} \sqrt{n}({\hat{\mu }}_{\tau |X}-\mu _{\tau |X})= & {} \sqrt{n}\int _{0}^{\tau }{\hat{S}}_{X}(u)-S_{X}(u)du\\= & {} \sqrt{n}\int _{0}^{\tau }e^{-{\hat{\varLambda }}_{X}(u)}-e^{-\varLambda _{X}(u)}du\\= & {} -\sqrt{n}\int _{0}^{\tau }S_{X}(u)({\hat{\varLambda }}_{X}(u)-\varLambda _{X}(u))du+o_{p}(1)\\= & {} n^{-\frac{1}{2}}\sum _{i=1}^{n}\varphi _{i}(\tau )+o_{p}(1), \end{aligned}$$

uniformly \(\tau \in [0,\tau ^{*}]\), where \(\varphi _{i}(\tau )=-\int _{0}^{\tau }S_{X}(u)\psi _{i}(u)du\).

Combined with Lemmas 3 and 4, the weak convergence of \(n^{1/2}({\hat{\mu }}_{\tau |X}-\mu _{\tau |X})\) can be proved with continuous mapping theorem. Since the \(\varphi _{i}\) variates are independent and identically distributed with mean 0, it is easy to get that \({\hat{\mu }}_{\tau |X}\) converges to \(\mu _{\tau |X}\) in probability and \(n^{1/2}({\hat{\mu }}_{\tau |X}-\mu _{\tau |X})\) converges weakly to a Gaussian process with mean 0 and covariance \(E(\varphi _{i}(t)\varphi _{i}(s))\) for \(t,s \in (0,\tau ^*)\). \(\square \)

Proof of Theorem 3

Under the assumption that the two observed samples are independent, it is obvious that \(\sqrt{n}\{{\hat{\mu }}_{\tau ,1}-\mu _{\tau ,1}\}\) and \(\sqrt{n}\{{\hat{\mu }}_{\tau ,2}-\mu _{\tau ,2}\}\) are independent. Since

$$\begin{aligned} \sqrt{n}({\hat{d}}_{\tau }-d_{\tau })=\sqrt{n}\{{\hat{\mu }}_{\tau ,1}-\mu _{\tau ,1}\}-\sqrt{n}\{{\hat{\mu }}_{\tau ,2}-\mu _{\tau ,2}\}, \end{aligned}$$

the asymptotic normality of \(\sqrt{n}({\hat{d}}_{\tau }-d_{\tau })\) can be derived from the asymptotic normality of \(\sqrt{n}\{{\hat{\mu }}_{\tau ,1}-\mu _{\tau ,1}\}\) and \(\sqrt{n}\{{\hat{\mu }}_{\tau ,2}-\mu _{\tau ,2}\}\) which is apparent under Corollary 1. \(\square \)

Proof of Theorem 4

Since

$$\begin{aligned}&\sqrt{n}\{{\hat{r}}_{\tau }-r_{\tau }\}=\sqrt{n}\left\{ \frac{{\hat{\mu }}_{\tau ,1}}{{\hat{\mu }}_{\tau ,2}}-\frac{\mu _{\tau ,1}}{\mu _{\tau ,2}}\right\} \\&\quad =\sqrt{n}\left\{ \frac{{\hat{\mu }}_{\tau ,1}}{{\hat{\mu }}_{\tau ,2}}-\frac{\mu _{\tau ,1}}{{\hat{\mu }}_{\tau ,2}}+ \frac{\mu _{\tau ,1}}{{\hat{\mu }}_{\tau ,2}}-\frac{\mu _{\tau ,1}}{\mu _{\tau ,2}}\right\} \\&\quad =\frac{1}{{\hat{\mu }}_{\tau ,2}}\{\sqrt{n}({\hat{\mu }}_{\tau ,1}-\mu _{\tau ,1})-r_{\tau }\sqrt{n}({\hat{\mu }}_{\tau ,2}-\mu _{\tau ,2})\}, \end{aligned}$$

based on Corollary 1, the asymptotic normality of \(\sqrt{n}({\hat{r}}_{\tau }-r_{\tau })\) can be derived from the asymptotic normality of \(\sqrt{n}\{{\hat{\mu }}_{\tau ,1}-\mu _{\tau ,1}\}\) and \(\sqrt{n}\{{\hat{\mu }}_{\tau ,2}-\mu _{\tau ,2}\}\) under Slutsky Theorem. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Zhou, Y. Nonparametric and semiparametric estimators of restricted mean survival time under length-biased sampling. Lifetime Data Anal 26, 761–788 (2020). https://doi.org/10.1007/s10985-020-09498-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-020-09498-x

Keywords

Navigation